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Abstract—This study aimed to develop a time–frequency 

method that can measure directional interactions over time and 

frequency from scalp-recorded electroencephalographic (EEG) 

signals in a way that is less affected by volume conduction and 

amplitude scaling. We modified the time-varying generalized 

partial directed coherence (tv-gPDC) method, by 

orthogonalization of the strictly-causal MVAR model coefficients, 

to minimize the effect of mutual sources. The novel measure, 

generalized orthogonalized PDC (gOPDC), was tested first using 

two simulated models with feature dimensions relevant to EEG 

activities. We then used the method for assessing event-related 

directed information flow from flash-evoked EEG responses in 

neonatal EEG. For testing statistical significance of the findings, 

we used a significance-level threshold that was derived from a 

baseline period in the same EEG activity. The results suggest that  

the gOPDC method i) is able to remove common components 

akin to volume conduction effects in the scalp EEG, ii) handles 

the potential challenge with different amplitude scaling within 

multichannel signals and iii) can detect directed frequency-

related information flow within a sub-second time scale in 

nonstationary multichannel EEG datasets. This method holds 

promise for estimating directed interactions between scalp-

recorded EEG signals that are commonly challenged by the 

confounding volume conduction effect of mutual sources. 

 
Index Terms—brain networks, connectivity analysis, directed 

coherence, electroencephalography, mvar modeling, volume 

conduction 

 

I. INTRODUCTION 

he human brain performs its sensory and cognitive 

functions by dynamically employing highly complex and 

interlaced neuronal networks. Better understanding of these 

network functions may open insights into pathophysiological 

mechanisms of neurological development and disease [1]. Due 

to its non-invasive nature, high temporal resolution and low 
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cost, scalp EEG is often used as the basis for studying brain 

connectivity [2-8]. Several methods have been developed for 

assessing directed interactions from EEG (or MEG) signals 

(reviewed in [9]). Among these, multivariate autoregressive 

(MVAR) models have been widely used for 

neurophysiological signal analysis [5, 6, 10-12]. An MVAR 

process is able to model interactions between EEG channels in 

the form of linear difference equations and allows the 

direction of information flow between channels including 

direct and indirect influences [12]. The concept of Granger 

causality [13], is widely used to investigate the flow of 

information within the coupled dynamical networks based on 

MVAR models. A dynamical process X is said to Granger-

cause a dynamical process Y, if the prediction of the process 

Y is enhanced using the information of the past of process X 

compared to the knowledge of the past of process Y alone [6]. 

This definition incorporates the lagged effects only from one 

channel to another, hence it is also denoted as lagged causality 

[6]. The immediate effect of a channel on the other channels at 

the zero delay is called instantaneous causality [6]. The 

combination of the concepts of lagged and instantaneous 

causality leads to the general form of extended causality [6]. 

In this paradigm, the classical MVAR models accounting only 

for the lagged causality are called strictly-causal MVAR 

models, while the models also considering the zero-lag effects 

are denoted as extended MVAR models [6]. The instantaneous 

effects built in the strictly-causal MVAR models are reflected 

in the non-diagonal elements of their noise covariance matrix. 

Therefore, they can be converted into the extended models 

using the Cholesky decomposition of their uncorrelated noise 

covariance matrix [6].  

Strictly-causal and extended MVAR models provide the basis 

for several measures of directional influence in multivariate 

systems, such as Granger Causality Index (GCI)  [14], 

Directed Coherence [15], Partial Directed, Multiple Coherence 

[16], Coherence (PDC) [15], extended PDC (ePDC) [6], 

generalized PDC (gPDC) [17], Directed Transfer Function 

[18] [16], and direct DTF (dDTF) [19] which have been 

validated using simulated models [6, 12, 15, 20, 21]. Ordinary 

coherence quantifies the linear relationship between two 

signals in the frequency domain. In a multichannel dataset, the 

linear relationship between two channels in absence of all 

other channels is measured by the partial coherence function. 

In fact, the function removes linear influences from all other 
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channels in order to detect direct interaction between channels 

i and j [15]. Multiple coherence describes the proportion of the 

power of the i’th channel at a certain frequency which is 

explained by the influences of all other channels  [16]. These 

coherence measures provide a symmetric representation of the 

relations between channels, namely, the extracted 

interrelationship matrix is always symmetrical. Directed 

coherence is defined as a unique decomposition of the 

ordinary coherence function and represents the directed 

interaction between channels. This measure is obtained by 

spectral decomposition of the cross-spectral density matrix 

and channel-wise normalization of each element in the matrix 

[15]. Although the directed coherence has a straightforward 

physical interpretation in terms of signal power transferred 

from one process to another, it cannot distinguish between 

direct and indirect causal effects within the channels. DTF and 

PDC account for the activity flow in a given direction as a 

function of frequency/time-frequency. In particular, the PDC 

inherits useful characteristics of both directed coherence and 

partial coherence at the same time. While the DTF shows all 

direct and cascade flows together (e.g. both propagations 

1→2→3 and propagation 1→3 are reflected in it), dDTF [19] 

can separate direct flows from indirect flows [9, 10]. The two 

frequency domain approaches to connectivity analysis (PDC 

vs. DTF) are designed to assess different properties in the 

signal with each having its own advantages and disadvantages 

[8, 12, 15, 20, 22]. The measure gPDC [17] combines the idea 

of DTF (to show the influencing effects) and PDC (to reflect 

influenced effects) between channel i and channel j. Also, GCI 

[14, 20] is a time-domain connectivity measure based on the 

concept of Granger causality.  The original versions of the 

previously discussed measures assume that the underlying 

signals are stationary and their interactions are constant over 

time, which has made their use challenging for EEG - a known  

time-varying (non-stationary) signal  [23, 24]. This has 

prompted the development of time-varying MVAR-based 

connectivity measures for EEG signal processing [7, 12, 21].  

A further significant challenge in connectivity analysis  of 

scalp EEG (or sensor space MEG) is the effect of volume 

conduction where a given brain source is often reflected in 

several EEG/MEG signals, and consequently, their similarity 

may be falsely perceived as ‘connectivity’ by the analysis 

paradigms [25]. This is particularly problematic with the 

MVAR-based connectivity measures that are  sensitive to 

volume conduction effects (for example, see page 94 in ref 

[26]). A potential solution is to perform the EEG/MEG 

connectivity analysis at the source level [27], although this 

would require sufficiently reliable source localization [28]. An 

intriguing idea for an alternative solution was provided by a 

recent study that mitigated the effect of volume conduction in 

the analysis of spatial EEG amplitude correlations [29] by 

orthogonalizing signal powers. A well-known related 

procedure is use of the imaginary part of the (ordinary) 

coherence function [25], which renders the estimate 

insensitive to instantaneous effects between two signals. In the 

present paper, we combine the idea of the dual extended 

Kalman filter (DEKF)-based time-varying PDC analysis [11], 

orthogonalization and imaginary part of coherence function 

leading to an orthogonalized version of the classical PDC, 

which we hereafter call orthogonalized PDC (OPDC). We 

propose here that combining orthogonalization and the 

imaginary part of coherence has the potential to reduce 

spurious co-variability, the common result of volume 

conduction effects. Moreover, we develop its generalized 

version (called gOPDC) to handle the numerical problem 

associated with potentially different variance of signal 

amplitudes (known as ‘time-series scaling [17]). The novel 

OPDC paradigm is compared with the classical PDC and 

gPDC, first using simulated time-invariant and time-varying 

models, and then using task-related EEG data obtained from 

flash light-evoked EEG responses of newborn babies. Finally, 

we will apply stringent statistical testing to assess 

significances of individual findings, and the time-frequency 

(T-F) connectivity maps are subsequently visualized in 3D 

directed graphs of the baby’s head to demonstrate the potential 

power of the proposed method in studying dynamical brain 

networks. 

II. METHODS 

A. Multivariate Autoregressive model 

For a given time series         with   number of samples 

(       ), a strictly-causal multivariate autoregressive 

(MVAR) model of order p is defined as [30]: 
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where            is a normally distributed real valued 

zero-mean white noise vector with diagonal covariance matrix 

                 
   where     is the expected value 

operator and   denotes the number of channels. The 

assumption of diagonality for    ensures that there is no 

instantaneous effect within the MVAR model described in (1), 

as there is no non-diagonal element in    [6]. The matrices Ar 

are given by: 

    
   
     

 

   
   
     

 
  (2) 

for r = 1, …, p. The real valued parameter    
  reflects the 

linear relationship between channel k and channel l at the 

delay  . In the stationary case, the optimum order p of an 

MVAR model can be estimated using different methods such 

as Akaike Information Criterion (AIC) and Schwarz’s 

Bayesian Criterion (SBC) [8, 31].SBC has been shown to be 

preferable over AIC for time series analysis [32]. For a 

reliable estimation of the MVAR parameters, the number of 

data points available (  ) need to be significantly larger than 

the number of parameters (   ) or equivalently, the signal 

length ( ) should be much longer than    [30].  

 

B. Time-varying PDC Measure 

Partial and directed relationships in a network can be detected 

using the PDC measure. As an example, suppose channel 1 
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affects channel 2 and channel 2 affects channel 3, that is. 

2←1, 3←2 where the arrows show the direction of the 

information flow. In this case, channel 1 has a direct 

relationship with channel 2, while there is an indirect (partial) 

relationship between channel 1 and channel 3. It has been 

shown in previous studies that the PDC measure outperforms 

its MVAR-based counterparts for connectivity analysis 

because it misses this partial relation [15, 20, 22]. 

The PDC measure is based on the concept of Granger 

causality [15]. The time-varying version of the PDC is  

defined based on the time-varying version of the model given 

in (1) (in which matrices       are time-varying) as [21]: 
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where         is the  ’th column of        defined as:  
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where   is the identity matrix and the frequency    varies 

within the range of 0 to the Nyquist rate. In (3),          is the 

  ’th element of       ,   
  denotes the Hermitian transpose of 

the vector    and     represents the absolute value operator. 

The measure          takes values between 0 and 1 where 

high values in a certain T-F bin reflects a directionally linear 

influence from channel   to channel   at that bin (       ). 

Note that the measure is directional, i.e.,           is not equal 

to          necessarily. The scale invariance version of the 

classical PDC (called generalized PDC or gPDC) is obtained 

by incorporating the variances of the innovation processes 

      [6, 17]:  

          
   

            

   
        

         

  
(5) 

where     are the diagonal elements of     The null 

hypothesis in the statistical significance test of the PDC-based 

connectivity analysis is then stated as: 

                  (6) 

where            is either          or          . Rejection of 

   implies a significant partial directed outflow of information 

from channel   to channel   [17].  

 

C. Time-varying orthogonalized PDC for reducing the effect 

of volume conduction 

The cortical electrical activity recorded by a scalp electrode is 

a space-averaged potential that is often considerably affected 

by spatial smearing  in the tissue layers between cortex and 

scalp [33]. This process, known as volume conduction, leads 

to co-variability in the EEG signal amplitude that is not due to 

true connectivity between underlying cortical activities. This 

effect needs attention in the pre-processing stage in any EEG 

connectivity analysis to differentiate presumably genuine 

brain interactions from those caused by smearing of EEG 

signal via volume conduction. To reduce the co-variability due 

to spatial smearing of the surface EEG signals, one can 

orthogonalize their power envelopes in the complex domain to 

remove the parallel components and extract the orthogonal 

parts [29]. The orthogonal components are then used in the 

connectivity analysis. Note that two signals can be orthogonal 

and still correlated [34]. The power envelope of a random 

signal represents the temporal evolution of its spectral power 

and can be derived using Morlet’s wavelets [29] or the Hilbert 

transform [35]. Parametric or non-parametric (FFT-based) 

methods are also used to explore the frequency content of the 

signal. It is known, however, that the FFT-based methods 

inherit performance limitations of the FFT approach. Namely, 

they are unable to provide high-frequency resolution and also 

suffer from the spectral leakage caused by the effect of 

windowing on the signal. Autoregressive (AR) model-based 

spectral estimation methods can overcome these limitations by 

fitting the observations to an AR model. These methods can be 

extended to multivariate signals using (1) leading to the power 

spectral density (PSD) matrix. Therefore, the MVAR model 

coefficients in (1) and (4) reflect the interactions within the 

channels and at the same time, they represent the spectral 

information of the signal power envelopes. The main idea 

behind the OPDC and gOPDC measures is that instead of 

performing the orthogonalization process at the signal level, it 

can be done at the level of MVAR coefficients to alleviate the 

effect of mutual sources [36].   

Suppose scalp EEG channels are generated through a linear 

superposition of   independent source signals within the brain 

with instantaneous effect on the surface electrodes. This 

relationship can therefore be formulated in the frequency 

domain using Fourier transform as follows: 

               

 

   

  (7) 

Equation (7) can be re-written in its matrix form: 

           (8) 

where         is the multichannel EEG signal in the 

frequency domain,         is the multivariate source signal 

in the frequency domain, and        includes all source 

weights: 

   

       

   
       

 . (9) 

Note that zero lag between the source signals and the sensor 

realizations ensures that the matrix   is real-valued. Assuming 

independence among sources, that is         
      

           
   with      denoting the Kronecker delta, the cross-

spectral density function        between       and      , i.e. : 

               
             

 

   

        
   (10) 

is necessarily real-valued [25]. Now, let us fit a strictly-causal 

MVAR model on the multichannel EEG signal      in the 
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time domain according to (1) and transform it into the 

frequency domain. We have: 

         
               

 

   

               (11) 

where  

         
      

 

   

  (12) 

           
        

 

   

  (13) 

Combining (8) and (11), we have: 

                    (14) 

Then, the cross-spectral density matrix of     , namely      

can be computed as: 

                

            

                             

(15) 

where the superscript   denotes the Hermitian operator. 

Assuming the source signals and noise processes are 

statistically independent, (15) is written as: 

                                            (16) 

Therefore,        in (10) can be obtained based on (16) as: 
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Since    
    and    

    are independent, all terms including 

    
      

            are zero resulting in: 
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 True interaction between channels, independent from the pure 

effect of mutual sources (that is, relations in which the effect 

of mutual independent sources has been excluded) is reflected 

in the imaginary part of       . Since         
       

  and 

        
      are necessarily real-valued,              will be 

written as: 

            

             
       

          
       

      

 

   

 

    

 

    

  
(19) 

Therefore, the terms          
       

      are associated with 

the true interactions between channels devoid of the effect of 

mutual sources and given by: 
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Thus the orthogonalized components of    
           

                 at different delays, i.e. the real part 

   
           and the imaginary part    

            play a 

salient role in estimating the true relations between channels, 

when the effect of mutual sources has been excluded. In fact, 

the orthogonalized components at different delays do not share 

the trivial co-variability caused by linear superposition of 

independent sources. Based on this rationale, we propose the 

orthogonalized version of the classical time-varying PDC 

(called OPDC) as a combination of the orthogonal 

components of the MVAR coefficients in the time-frequency 

domain given by: 

          

      
        

                         
 
    

 
     

  
             

 

 
           

                      
              

 
    

 
     

  
             

  

(22) 

(23) 

Summation of the weighted sine and cosine terms in (22) 

imposes a trend varying appearance to the OPDC measure 

along the frequency axis. It is straightforward to show that 

(22) and (23) are equivalent with the following decomposition 

of          in (3): 

         
                

   
             

 
                

   
             

   

              

(24) 

Since each factor in (24) is greater than zero and less than 

        , the measure          will always take values 

between zero and 1. In analogy to the definition of gPDC, the 

OPDC can be extended to the gOPDC           by taking the 

effect of time series scaling into consideration: 
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In the next sections, we evaluate the proposed measures on 

two simulated models consisting of a time-invariant as well as 

a time-varying strictly-causal MVAR model affected by a 

linear superposition of independent sources.  

 

III. TESTING THE OPDC PARADIGM  

To evaluate the performance of the OPDC and gOPDC 

measures against the performance of the classical PDC and 

gPDC, two independent simulations were conducted covering 

both time-invariant and time-varying circumstances. The basic 

form of the time-invariant model was used in [15] to reflect 
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the superiority of the PDC to the DTF. Also, the time-varying 

one has been previously used in [21] to extract time-variant 

directed influences during Parkinsonian tremor. The models 

were then manipulated by adding random interactions between 

channels to test the integrity of our connectivity analysis 

framework.  

 

A. Time-invariant simulated model  

The model is a 5-dimensional time-invariant strictly-causal 

MVAR[37]-process plus a linear superposition of sparse 

uniformly distributed random sources with approximately 

50% nonzero entries within the interval [0 3], given by: 

                (26) 

where      is a strictly-causal MVAR model of order 3 

with 5 channels and      is its distorted version with some 

confounding instantaneous interferences between channels 

defined by       , a time-constant random mixing matrix 

and     , the intermittent interactions between channels given 

as a 6-channel sparse uniformly distributed random matrix 

with 50% nonzero entries. The matrix   is a weighting matrix 

whose element in the     position represents the random 

interaction between the     and      component of     . In fact, 

we have assumed that six sparse and instantaneous 

relationships are being imposed randomly on     . The 

distorted matrix      is finally used for connectivity analysis. 

The elements of   were selected from the interval [0, 1] 

through a uniformly distributed pseudorandom generator. The 

MVAR process                   
  is expressed as (see also 

[15]): 

 
 
 
 
 

 
 
 
                                         
                             

                             

                            

                                      

                                               

                                       

                              

  (27) 

where                   
  is a normally distributed 

white noise vector with different variances for its entries. The 

model is simulated for        samples at the sampling 

frequency          . 

 

B. Time-varying simulated model  

The model is a 3-dimensional time-varying strictly-causal 

MVAR[37]-process plus a linear superposition of sparse 

uniformly distributed random sources with approximately 

50% nonzero entries within the interval [0 1], given by (26) 

where        is a time-constant mixing matrix and      

represents the intermittent interactions between channels. 

Similar to the time-invariant case, the elements of   were 

selected from the interval [0, 1]. The MVAR process   
          

  is denoted as (see also [21]): 

 
 

 
                                    

                                                    

                                         

                                         

  (28) 

where             
  is a normally distributed white 

noise vector. For a model of length        samples and the 

sampling frequency          , parameters      and      

are depicted in Fig. 1. For MVAR parameter estimation, the 

model order is fixed to 2 throughout the process. 

 
Fig. 1: Time course of the time-varying parameters in the simulated model 

(see also [21]). 

 

C. Newborn EEG data 

We used 20-channel EEG recordings of four full-term 

newborns obtained from EEG archives in the Department of 

Children’s Clinical Neurophysiology (Helsinki University 

Central Hospital, Finland). The signals were recorded during 

sleep with sampling rate of 256 Hz using a NicoOne EEG 

amplifier (Cardinal Healthcare, USA) and EEG caps (sintered 

Ag/AgCl electrodes; Waveguard, ANT-Neuro, Germany) with 

positioning according to the international 10-20 standard (see 

[38] and http://www.nemo-europe.com/en/educational-

tools.php  for further details of the newborn EEG recording 

method). To capture connectivity in the brain network 

associated with visual processing (., postcentral) driven by the 

visual stimuli, we selected ten monopolar channels (Cz as the 

reference - see also Fig. 7) divided into two groups 

representing left (O1,C3,P3,T3,T5) and right 

(O2,C4,P4,T4,T6) hemispheres. The analysis of functional 

connectivity was then performed on each hemisphere (group) 

separately. Visual stimuli were delivered with the routine flash 

stimulator of the NicOne EEG system at 1Hz for 5 minutes 

(thus a total of 300 times). The continuous multichannel EEG 

recordings were then segmented into one-second non-

overlapping epochs each of which included one of the 1Hz 

visual stimuli. Use of these anonymized EEG recordings has 

approval from the Ethics Committee of the Hospital of 

Children and Adolescents, Helsinki University Central 

Hospital. 

D. Pre-processing prior to the OPDC analysis 

The following sequence of pre-processing was applied on 

the continuous raw EEG data using EEGLAB functions [39]:  

independent component analysis (ICA) was used to remove 
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ECG artefact, mains noise (50Hz) as well as potential artefacts 

introduced by the flash stimulator directly to the EEG 

electronics. All 20 EEG electrodes were used at this stage to 

maximize the reliability of ICA operation [37]. The signal was 

band-pass filtered between 0.1Hz and 30Hz (using a Finite 

Impulse Response -FIR- filter of order 200). Periods of the 

EEG with exceedingly high artefacts were then visually 

identified, marked manually, and excluded from the later 

analysis. The remaining epochs were submitted for further 

analysis (212±28.6 average number of epochs per 

hemisphere). 

E. Statistical testing of EEG responses  

In order to evaluate the significance of our tv-gOPDC 

results, we employed statistical hypothesis testing for each 

individual pair-wise connection within a multichannel EEG 

dataset using a null distribution that we generated from the 

signal itself. The null hypothesis is stated as statistical 

similarity between the baseline condition and post-stimulus 

activation. In other words, we tested whether the gOPDC 

measure after flash light stimulation is statistically different 

from the gOPDC measure without brain activity triggered by 

the flash. This approach acknowledged the idea that brain 

areas may interact spontaneously in the absence of external 

stimulation leading random connectivity between EEG 

channels. Hence, the statistically significant event-related 

information flow can be estimated by comparing it to the level 

of interactions that take place between those same electrodes 

in the absence of stimulation. Studies on event related 

oscillatory activity often use ‘baseline’ subtraction at the trial 

level [40]. Fig. 7-a illustrates an example of the clear 

difference between the baseline (last 400 ms after flash light 

stimulation) and stimulus-induced components (first 400 ms 

interval) in a newborn visual evoked potential (VEP) signal. 

However, we searched for additional statistical power and 

analytical stability by generating a null distribution from a 

larger set of baseline epochs. The statistical approach usedis 

conceptually straightforward and computationally efficient 

compared to the sample shuffling, that in our multivariate 

dataset needed up to 10 hours computation time per baby 

(using a Windows-based PC of 2.66 GHz Core2 Duo CPU 

with 8 GB of RAM).  

To this end, we constructed the null distribution using the 

last 400ms interval of the one-second inter-stimulus EEG 

epochs, which was found to be beyond all obvious 

components of visual evoked potentials (see also Fig. 7-a), 

hence considered as the ‘baseline’ (typical  EEG activity 

known as “background”). The tv-gOPDC measures were 

extracted from the first 400ms of each epoch and compared 

with a distribution of the same measures extracted from the 

last 400ms intervals for all epochs. The procedure of obtaining 

a T-F thresholding plane for each group (either left or right 

hemisphere) of each subject is as follows: 

1. tv-gOPDC measures are extracted from the whole length 

(one second) of each epoch. If   is the number of epochs 

for subject i obtained from either right or left hemisphere, 

  time-frequency representations of the gOPDC measures 

are obtained at the end of this step. 

2. Each time-frequency representation is divided into two 

parts: the first one covering the beginning 400ms interval 

and the second one covering the last 400ms interval. First 

intervals over epochs provide the original estimates and 

the second intervals build the null distribution’s library.  

3. The highest score at the 99th percentile of the distribution 

of each T-F bin over epochs is computed. With our 

resolution (3.9 ms × 0.5 Hz), this yields a threshold plane 

(or matrix) with 102 time bins (0.4 s,        Hz) and 

60 frequency bins (        Hz), thus altogether 6120 

threshold values in the thresholding plane that covers the 

whole T-F graph. 

Fig. 2 illustrates the above procedure for constructing the 

thresholding plane that determines significance level of the T-

F bins in the gOPDC graph. The statistical testing procedure 

was applied on the pre-processed data of each subject at each 

group (hemisphere) to obtain a subject-dependent thresholding 

plane. To find the T-F bins with significant values over the 

first 400ms time interval, a T-F threshold was applied to each 

epoch Average of the thresholded gOPDC plots was computed 

as the mean connectivity representation of the subject in the 

under-investigated hemisphere (see Fig. 2). At the end, each 

subject had two average multichannel representations, one for 

each hemisphere. 

 

F. Implementation of the DEKF-based OPDC measure for 

the EEG signals 

In this paper, the coefficients       in (4) are estimated 

using the dual extended Kalman filter (DEKF) [41]. Time 

dependent parameters       account for the nonstationary 

behavior of the signals. The DEKF is employed to estimate 

time-varying MVAR parameters fitted on the multichannel 

EEG signals. It leads to a time resolved gOPDC measure 

quantifying the time-varying directed influences within 

channels in the time-frequency (T-F) plane. The resulting 

DEKF-based T-F plane is constructed on a sample-by-sample 

basis. Therefore, the time resolution is defined by the 

sampling step size and the frequency resolution is determined 

by the number of frequency bins in the gOPDC measure (here,  

       Hz leading to 3.9 ms steps and          leading 

to 0.5 Hz spectral steps). The MVAR model order determines 

the frequency resolution of the estimates: low-order MVAR 

models cannot capture low-frequency components due to their 

short memory [42]. On the other hand, high-order MVAR 

models are able to represent rapid changes in the signal, but 

reliable estimation of their numerous parameters needs lengthy 

signals. If the signal is known to be stationary (which is not 

generally true for EEG), the optimum order p can be estimated 

using different methods such as the Akaike information 

criterion (AIC) or the Schwarz’s Bayesian criterion (SBC) 

[31]. The model order selection is not straightforward for 

time-varying MVAR models, as it may vary over time. In this 

study, the optimal model order is estimated by evaluating the 

SBC for a range of p values over the entire data using the 

ARFIT toolbox [31] and is kept constant during the process. 
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Since the MVAR parameters needed to be inferred from a 

short EEG segment in this study (one second), the order of the 

model was kept as low as possible (p=5). The whole procedure 

of extracting the tv-gOPDC values from the multichannel 

newborn EEG datasets is depicted in Fig. 2. The two 

hemispheres were analyzed as separate groups of electrodes, 

and quantitative 3-D maps of directed influences were plotted 

using customized MATLAB functions of eConnectome 

toolbox [43].  

 

 

(a) (b) 

Fig. 2: a) The block diagram of implementing the DEKF-based gOPDC measure and the null distribution from N multichannel epochs of the newborn VEP 

responses. The thresholding plane in the last stage will be used to determine the significant values of the OPDC measures in the T-F domain. b) The procedure of 

constructing the thresholding plane for the tv-gOPDC measures. Each white square represents a tv-gOPDC representation associated with the last 400 ms of an 

epoch. The histogram of each T-F bin (small black squares) over all epochs of a group is obtained and its highest score at the 99th percentile is extracted. The 

estimated value is then used as the threshold of that T-F bin in the thresholding plane. 

IV. RESULTS 

Our comparison between different methodologies is based 

on visual inspection (Figs 4 and 5)  analogous to the original 

PDC study [15], and we found this sufficiently revealing to 

conclude that there were considerable differences between 

methods. However, a quantitative measure with statistical 

testing was used for an objective comparison of the EEG 

results in which the average tv-gOPDC values over predefined 

T-F planes were computed (see Fig. 7). 

 

A. Time-invariant simulation 

The corresponding PDC, gPDC, OPDC and gOPDC 

measures for the time-invariant model given by (26) and (27) 

are plotted in a matrix layout in Fig. 3. In the ideal case, we 

expect to see the immediate impact of channel 1 to channels 2, 

3 and 4 as well as the reciprocal effect between channels 4 and 

5 (that is, non-zero values for       ,       ,       ,        

and       , while the other flows are zero). Because of the 

effect of mutual sources, the classical PDC (Fig. 3 -a) shows 

an erroneous reflection of the true connections (considerable 

effect of channel 1 on the other channels) in addition to the 

spurious leakages among some other channel pairs. The 

distinctive role of channel 1 in contrast to the other channels 

refers to its large noise variance. This problem is tackled to 

some extent by the gPDC (Fig. 3-b), although leakage due to 

the effect of mutual sources still exists. The OPDC measure 

(Fig. 3-c) alleviates the leakage problem, but is not able to 

confrontthe issue of different amplitude scaling. Namely, 

considerable non-zero values due to the large noise variance of 

channel 1 are observed for        and        in Fig. 3-c. The 

gOPDC measure (Fig. 3-d) takes both the issue of time series 

scaling and information leakage into consideration and 

provides the most desired presentation of the information 

flows.  
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(a) (b) 

  
(c) (d) 

Fig. 3: Diagrams of the mutual influences within the multichannel time-invariant model given by (26) and (27): a) PDC, b) gPDC, c) OPDC and d) gOPDC. 

The diagonal plots (effect of each channel on itself) are excluded from the matrix layouts. 

 

 

B. Time-varying simulation 

Comparison of the tv-gOPDC measures to tv-gPDC 

measures on the time-varying simulated model described in 

(26) and (28) demonstrates that gOPDC can effectively 

remove the intermittent interactions between variables (Fig. 

4). In this study, the optimal model order was estimated by 

evaluating the SBC for a range of p values over the entire data 

using the ARFIT toolbox [31] and kept constant during the 

process for all simulations as well as EEG signal analysis. 

Both measures are able to successfully reflect the oscillatory 

partial connectivity from channel 2 to channel 1 (         , 

         ) as well as the ramp-shaped strength influence from 

channel 3 to channel 1 (         ,          ) (see Fig. 4). 

According to the model, there is no direct coupling from       

to       and      , from       to      , and also from       

to      . This is reflected well in the corresponding gOPDC 

graphs with negligible activity. However, the corresponding 

gPDC graphs for          ,          ,           and           

represent high false positive values. Another large difference  

can also be observed: the residual connectivity values after 

removing the effect of mutual sources reveal much smaller 

magnitude than the gPDC values (note the colour bars in Fig. 

4). This observation originates directly from the 

orthogonalization step in the gOPDC measure where the 

spurious connectivity caused by the mutual sources is 

attenuated.  
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(a) (b) 
Fig. 4. The connectivity measures extracted from the simulated model. a) time-varying gPDC, b) time-varying gOPDC. The diagonal plots (effect of each 

channel on itself) have been excluded from the matrix layouts. 

 

C. Newborn EEG data 

Because the MVAR parameters need to be inferred from a 

short EEG segment(one second), the order of the model 

should be kept as low as possible (   ). Many coefficients 

of a high-order MVAR model cannot be reliably estimated 

from a short length signal. Therefore, we were conservative in 

selecting the optimum model order and selected the lowest 

order at which a near constant plateau appears in the 

information criterion diagram of the SBC method. On the 

other hand, low-order MVAR models cannot capture low-

frequency components, as they have short memory [42]. 

Therefore, we exclude low-frequency results of this study 

(below 1-2 Hz) from our interpretations.   

To make sure that the EEG results are not substantially 

affected by different amplitude scaling in scalp EEG 

electrodes (see Fig. 7-a), the gOPDC was used for EEG 

connectivity analysis and its performance was compared with 

the gPDC. The time-varying results (Fig. 5) were obtained for 

the scalp EEG electrodes of the left hemisphere after 

thresholding as described above. As shown in Fig. 5, the 

gPDC levels are notably high and spread across the whole T-F 

plane with emphasis on low frequency components, whereas 

gOPDC levels are clearly emphasized around 10 Hz. In 

particular, the low frequency content (lower than 3 Hz) 

associated with the mutual components of the newborn EEG 

signals have been almost eliminated in the gOPDC plots. 

 

  
(a) (b) 

Fig. 5: Time-varying connectivity analysis of the scalp EEG electrodes from the left hemisphere. A) gPDC measure, b) gOPDC measure. 

 

The time-invariant measures (Fig. 6) can be readily 

obtained by temporal averaging of the corresponding time-

varying values (Fig. 5). They show a clearly dominant hump 

at around 7-10 Hz. In contrast, the gPDC plots show strikingly 

high levels towards both higher and lower frequency 

components. We find it plausible to assume that these 

frequency components represent mainly the “common mode” 

effect of reference electrode that is unavoidably present in 

monopolar recordings, which is effectively attenuated by 

orthogonalization at the level of MVAR parameters. 
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(a) (b) 

Fig. 6: Time-invariant connectivity analysis of the scalp EEG electrodes from the left hemisphere. A) gPDC measure, b) gOPDC measure. 

 

The conventional time-locked averaging of the EEG 

showed canonical shape visual evoked responses in both 

hemispheres and in all babies (Fig. 7) with little difference in 

timing and shape of components between scalp locations. The 

first components always started before 200ms, and no 

consistent response components were seen beyond 400ms post 

stimulus. Notably, all components of this response have a 

strong spatial decay towards central (C3 and C4) and temporal 

(T3 and T4) sites, with maximal amplitude in the occipital 

electrodes (O1 and O2). Based on these observations, we 

limited our tv-gOPDC analysis to a rectangular time-

frequency area from 100ms post stimulus onwards and within 

the frequency range of 5-15 Hz (Fig. 7-d). Grand-mean T-F 

maps of directional interactions between EEG channels at 

each hemisphere over subjects are demonstrated in Fig. 7-b 

and c. The 3-D connectivity maps of the grand mean 

interactions at 5-15Hz band were then created from 2-D 

averaging of the T-F gOPDC values within three different 

time spans:    =100-200 ms,    =200-300 ms and    =300-

400 ms  (see Fig. 7-e, f and g, respectively).  

 
  

(a) (b) (c) 

 

   

(d) (e) (f) (g) 
Fig. 7: a) Average VEPs of a typical subject - responses of the right group of electrodes, b,c) Average tv-gOPDC measures across four subjects for the 

occipital-temporal-parietal areas from 100 ms to 400 ms post-stimulus at the left and right hemispheres, respectively. The direction of the information flow is 

presented on top of each map. d) Rectangular T-F compartments over which the gOPDC measure was averaged. e,f,g) Color-coded 3-D directed graphs 

representing the grand-mean information flow at    =100-200 ms,    =200-300 ms and    =300-400 ms, respectively, after the stimulus onset within the 

frequency range of 5-15 Hz. Note the substantial decrease of information flow in the last time window compared to the first two time windows. Each color-coded 

arrow shows a directed interaction between two electrodes. 
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An overall inspection of the results in Fig. 7-b,c suggests 

that there are preferential frequencies and directions of 

information flow in the T-F domain. To quantify the visual 

interpretation of the results, the total mean gOPDC value was 

calculated for each plot. The pair-wise gOPDC maps, i.e. two 

maps for each electrode pair (one for each direction) can be 

interpreted as the pure directional ‘coherence spectrogram’ 

between the two electrodes, when the effect of volume 

conduction is removed. Notably, most directed information 

flow appears to take place at 5-15Hz frequency band, with a 

general decrease in frequency over time. This change in 

frequency is, indeed, compatible with the respective changes 

in the intrinsic frequency content of the average waveforms 

(Fig. 7-a) which show a clear attenuation of interactions 

towards the end of the 400ms analysis window. The grand 

mean gOPDC maps (Fig. 7-b,c) reveal strong interrelations 

between the occipital and central areas at the left hemisphere 

and between the occipital and temporal areas at the right 

hemisphere around the central frequency of 10 Hz (most 

dominant interactions are O1←C3 and O2←T4). In both 

matrix layouts (left and right – 40 maps in total), the dominant 

electrode pairs involve the occipital and parietal electrodes as 

the sink of information (e.g. P3←T3, O2←T4, O1←C3). In 

addition, relatively high T-F interactions originate from the 

temporal lobe and discharge into the occipital and parietal 

lobes (e.g. P3←T5, P3←T3, O2←T4). 

 The 3-D plots are compatible with the observations from 

the time-frequency gOPDC graphs in Fig. 7-b,c that show 

attenuation of the interactions in the network  over time. In the 

earliest time window (100-200ms), most connections are 

active, whereas the interactions weaken towards the end of the 

analysis time. The 3-D maps also show the long connections 

from the occipital lobe to the central regions. 

 

V. DISCUSSION  
Our work demonstrates that directional information flow 

can be assessed in the T-F domain from multivariate EEG 

datasets, and it can be statistically tested at the level of each 

individual connection. The method we describe here stems 

from combining multiple independent streams of prior 

analytical development: the core of the OPDC measure and its 

generalized version is grounded on the T-F representation of 

MVAR processes and the notion of Granger causality. To 

render the estimate insensitive to instantaneous effects 

between two scalp EEG signals, the well-known idea of taking 

the imaginary part of the coherence function has been used 

[25]. In our study, we combined the idea of time-varying PDC 

analysis [11] with orthogonalization at the level of MVAR 

parameters,   as considering the imaginary part of the 

coherence function lead to an orthogonalized version of the 

classical PDC . Moreover, we developed its generalized 

version (called gOPDC) to handle the numerical problem 

associated with varying amplitude scaling between signals. 

The performance of the gOPDC measure was evaluated using 

a simulated model and real newborn EEG signals. 

The major properties of the tv-gOPDC paradigm and their 

relationship with the previously published measures can be 

summarized as follows: 

A. The gOPDC approach is based on the strictly-causal 

MVAR model given in (1) which does not consider the 

instantaneous interactions between EEG channels. An 

extended MVAR model which takes into account the 

instantaneous effects will be similar to (1) with      for 

    [6]. In this case, the gOPDC measure given in (25) 

can be extended in a similar way as presented in [6] 

where the MVAR coefficients are modified in the 

presence of zero-lagged effects. However, it is shown in 

[6] that if a strictly-causal MVAR model is inaccurately 

fitted on an extended MVAR process, true instantaneous 

influences are likely to be reflected as spurious lagged 

interconnections among the model inputs.    

B. In contrast to ordinary coherence, partial coherence, 

multiple coherence and similar to the DTF, dDTF, PDC 

and gPDC, the proposed gOPDC method is able to extract 

direction of the information flow and differentiate 

between direct/indirect interactions.  

C. it inherits all characteristics of the classical PDC which 

makes it superior to the DTF and dDTF. 

D. as opposed to GCI, it can extract both temporal and 

spectral interactions. 

E. in comparison with the PDC and gPDC for the specific 

application of scalp EEG analysis, it is able to alleviate 

the distorting  effect of volume conduction within 

multichannel EEG signals.    

One should note, however,  that the inverse spectral matrix 

elements employed in the family of PDC-based measures 

makes physical interpretation of their results difficult in terms 

of power spectral density.  

We have demonstrated that tv-gOPDC using DEKF is able 

to track changes associated with transient couplings and 

remove the effect of mutual independent sources within the 

multivariate nonstationary signals. Most of the existing EEG 

connectivity analysis methods assume stationarity of 

interactions in the underlying signals, while EEG signals are 

well-known to be nonstationary [23, 24]. Also, the effect of 

volume conduction and the differences in amplitude scaling 

between EEG signals can pose challenges. Our present work 

introduces a time-frequency framework for functional EEG 

connectivity analysis to deal with both confounders, and 

extracts the sequence of nonstationary information flows 

between EEG channels within sub-second segments and at the 

lack of scale invariance. This approach obviously requires 

sufficient signal to noise ratio, which can be achieved by 

averaging over a larger number of trials. The effects of other 

sources of constant noise or artefacts, such as mains noise and 

its harmonics, can be mitigated by efficient artefact handling 

(see pre-processing steps) and by employing statistical testing 

of the kind presented in our work. The method of generating 

null distributions from the original EEG segments will directly 

affect the statistical testing. There are several customized 

versions of classical surrogate data methods to estimate 

significance in PDC connectivity analysis [44, 45]. Their 



OMIDVARNIA ET AL, MEASURING TIME-VARYING INFORMATION FLOW FOR SCALP EEG SIGNALS: ORTHOGONALIZED PARTIAL DIRECTED COHERENCE 

application to each epoch in a multivariate dataset 

(multichannel newborn EEG in our study) is, however, often 

computationally challenging, and we do not see specific 

advantages to their use compared to our conceptually 

straightforward method. As an alternative, the null distribution 

of our hypothesis testing (cortical connectivity vs. no 

connectivity) can be generated using the background EEG in 

the given experiment, which is also automatically 

“normalized” with respect to spontaneous (as opposed to 

event-related) brain connectivity as well as technical variances 

(for example. external noise or inter-individual variations in 

the recording constellation). The method presented in our 

paper is conceptually straightforward and computationally 

efficient.   

The effect of EEG montage is another important factor in 

studies on EEG connectivity. While we used monopolar 

montage with Cz reference in this study, other montages like 

Laplacian or average referencing should be explored. Use of 

monopolar reference outside of the analysed EEG signals may 

be perceived as neutral with respect to mixing sources among 

the analysed signals, however it also leads to a significant 

common source in all signals that is technically identical to a 

serious volume conduction effect. We found it particularly 

encouraging to see that even such common source component 

could be alleviated by using the orthogonalization procedure. 

Using Laplacian or average reference montages would require 

a high number of recorded EEG channels. Hence, it seems 

intriguing that our method may even open the possibility to 

analyze recordings with only few monopolar EEG signals, 

such as the routine clinical evoked potential studies. However, 

any effect of the number of electrodes also affects tv-gOPDC 

measures, and it needs systematic assessment in prospective 

applications for two reasons: first, higher electrode density 

implies increased mutual components caused by volume 

conduction. Second, quantitation of directional interactions 

between higher number of pair-wise comparisons can dilute 

the effect between each electrode pair, which calls for higher 

signal-to-noise ratio. These considerations imply that i) 

increasing the electrode density may be beneficial when it is 

used for spatial down-sampling (either at signal or at source 

space), while ii) the performance of tv-gOPDC improves by 

selecting a lower number of signal pairs as guided by a priori 

knowledge about assumed number of underlying, interacting 

sources. Indeed, such optimization is an inevitable exercise 

with all advanced analyses of brain interactions. 

The ability of the gOPDC in detecting interactions between 

sources within the cortex in the presence of volume 

conduction can be quantitatively measured using other 

simulated models like the one presented in [46] where the 

interactions at the source level are projected onto the scalp 

through a realistic lead field matrix. In the special case where 

source activities are governed by an MVAR process, a 

different version of (26) like  

x(n)=Vy(n) can be used for simulation purposes in which      
is the multichannel scalp EEG,   represents the lead field 

matrix and      models the lagged source time traces in the 

form of an MVAR process. The simulation strategy of this 

study, however, was to look at the EEG connectivity problem 

from another perspective, namely fitting an MVAR model on 

the scalp EEG signals (not sources) in the presence of an 

additive interfering factor.   

The time-varying connectivity approach used in this paper 

discloses longer range connections from occipital to temporal 

and central regions, which is strikingly compatible with 

previous steady state VEP studies in adults [47, 48]. Our 

proposed analysis methodology as well as the stimulation 

paradigm (a routine flash light during routine clinical EEG 

recording) is directly applicable even for larger scale clinical 

testing. Notably, a directed information flow, often called 

‘travelling waves’ in the adult literature [49] is considered to 

be sensitive to changes in sub-cortical structures [50]. In the 

clinical context, it raises the potential that our paradigm could 

be used to assess integrity of the sub-cortical structures after 

acute brain injury, such as birth asphyxia, where diagnostic 

strategies have remained a challenge [51, 52]. The present 

paradigm may have applicability to follow change over time in 

response to therapy and prognostication of long term outcome. 
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