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a b s t r a c t

This paper proposes an approach for robust estimation of highly-varying nonlinear
instantaneous frequency (IF) in monocomponent nonstationary signals. The proposed
method is based on a lower order complex-time distribution (CTD), derived by using the
idea of complex-time differentiation of the instantaneous phase. Unlike other existing
TFDs in the same framework, the proposed TFD is an order-free distribution which
alleviates the subtractive cancellation error in IF estimation. The approach is applied to
highly nonstationary monocomponent signals. Performance of the numerical implemen-
tation is compared with three existing IF estimation methods using three simulated
signals. Noise analysis is also performed to evaluate the robustness of the method in
presenfdece of additive noise at signal to noise ratio (SNR) varying from −10 dB to 20 dB.
Results show that the proposed method outperforms the other methods at lower SNR and
works reasonably well for the noiseless case.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Dealing with nonstationary signals whose frequency con-
tent changes over time is a common problem in many
research areas including biomedical signal processing [1],
radar analysis [2], signal detection [3] and telecommunica-
tions [1,4]. The time-varying spectrum of nonstationary
signals is discussed using the concept of instantaneous
frequency (IF) [1,5,6]. A monocomponent nonstationary signal
is defined as a signal whose time–frequency distribution (TFD)
represents a single time-varying ridge in the time–frequency
(T–F) domain. In contrast, a multi-component signal consists
of two or moremonocomponent signals, each of which has its
own IF and instantaneous amplitude [7]. In practice, for the
All rights reserved.

x: +61 7 3346 5509.
vast majority of real signals, their corresponding TFDs may
contain broadband noise as well as multiple spectral compo-
nents [8]. Therefore, IF estimation of general nonstationary
signals may require a pre-processing stage to decompose the
signal into monocomponent signals, using methods such as
time–frequency blind source separation [9,10], prior to apply-
ing monocomponent IF estimation techniques or it may
require the design of specially adapted or reduced interfer-
ences realization for multicomponent signals [11].

A well-know approach for IF estimation is based on the
extraction of the IF ridges in signal TFDs [5,6]. Several IF
estimation methods belong to this class including model-
based [12,13], Wigner–Ville distribution-based [1], L-Wigner
distribution-based [14], polynomial Wigner–Ville distribution
(PWVD)-based [15,16] and complex-time distribution-based
[17–19] approaches. Among these, those based on complex-
time distributions (CTDs) have been shown to be capable of
estimating highly-varying nonlinear IFs [17,19]. The complex
time argument was firstly introduced in [18] for CTDs where a

www.elsevier.com/locate/sigpro
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2013.03.041
http://dx.doi.org/10.1016/j.sigpro.2013.03.041
http://dx.doi.org/10.1016/j.sigpro.2013.03.041
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.sigpro.2013.03.041&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.sigpro.2013.03.041&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.sigpro.2013.03.041&domain=pdf
mailto:a.omidvarnia@uq.edu.au
mailto:amir.omidvarnia@gmail.com
http://dx.doi.org/10.1016/j.sigpro.2013.03.041


A. Omidvarnia et al. / Signal Processing 93 (2013) 3251–32603252
derivative of function (here, instantaneous phase) was esti-
mated based on its complex-argument Taylor expansion.
Although the general form of CTDs has been well-estab-
lished for all even orders in previous studies [11,17–20] (see
also Eq. (7)), consideration of lower order IF approximation as
a potential way of increasing robustness to noise has not
received full attention in previous studies. This could be
important, because higher order derivatives of a function are
more vulnerable to noise compared to the lower orders.
Therefore, the estimation of highly-varying IFs in nonstation-
ary and noisy signals is still an open field of research [21]. This
study proposes a lower order CTD, as a variant of the phase
derivative estimation principle introduced in [18], derived
using a robust approximation of the instantaneous phase
(IP) derivative of the signal. The concept of complex-time
argument has also been adapted for accurate numerical
differentiation of a function, the so-called complex-step
differentiation (CSD) [22]. The CSD is preferred over the
standard finite difference since (i) it does not suffer from the
subtractive cancellation error1, (ii) it can be used for highly
changing functions, (iii) it is applicable to general nonlinear
functions, (iv) it is robust to noise, and (v) it retains a
reasonable computational cost [23,24]. Therefore, it is a good
choice for estimating the nonlinear and highly-varying IF laws
in nonstationary and noisy signals. In this study, we show,
using simulations, that the peak frequency of the proposed
lower order CTD provides an accurate and robust estimate of
the highly-varying IFs. We also show that the proposed IF
estimation method is comparable with and in some cases,
superior to existing IF estimators specifically designed for
highly nonstationary signals [16,19].

The organization of this paper is as follows. Section 2
reviews the theoretical background associated with the
TFDs designed for representing highly nonstationary signals
along with the concept of complex-time argument differ-
entiation. Section 3 details the proposed lower order CTD
and its associated IF estimation procedure as well as the
numerical implementation. In section 4, the performance of
the proposed method is evaluated and compared with four
existing methods using three simulated signals. Noise
analysis is also performed using Monte-Carlo simulations
to assess the robustness of the methods in the presence of
noise. Section 5 concludes the paper. The relevant steps for
the mathematical proofs related to the properties of the
proposed distribution are given in the Appendix.

2. TFDs with complex-time argument differentiation

Let z(t) be the normalized analytic associate [1] of a real-
valued monocomponent signal xðtÞ, given by

zðtÞ ¼ ejφðtÞ ð1Þ
where φðtÞ denotes the IP of the signal. The IF law of zðtÞ is
defined as [1]

f iðtÞ ¼
1
2π

dφðtÞ
dt

: ð2Þ
1 In floating-point computations, the subtraction of nearly equal
floating-point numbers may lead to the loss of significant digits. This
error is referred to as the subtractive cancellation error.
Ideally, a TFD of zðtÞ should exhibit a unit delta function
along the IF as [1]:

ρzðt; f Þ ¼ δðf−f iðtÞÞ ð3Þ
where δð:Þ denotes the Dirac delta function. By taking the
inverse Fourier transform with respect to f from Eq. (3),
the signal kernel (also called instantaneous autocorrelation
function—IAF) of the signal is obtained as [1]

Kzðt; τÞ ¼ℱ−1
τ←f

fρzðt; f Þg ¼ ej2πf iðtÞτ ¼ ejφ′ðtÞτ ð4Þ

where ℱ−1
τ←f

denotes the inverse Fourier transform from the

frequency domain to the lag domain. In the classical
definition of the WVD, the differentiation term φ′ðtÞ is
approximated by

φ′ðtÞ≈φ t þ τ
2

� �
−φ t− τ

2

� �
τ

ð5Þ

which leads to the well-known form of this distribution [1]
as

WVDzðt; f Þ ¼ ℱ
τ-f

f Kzðt; τÞ
� �g ¼

Z ∞

−∞
z t þ τ

2

� �
zn t−

τ

2

� �
e−j2πf τdτ:

ð6Þ
For the polynomial IFs with phase order of 2 or higher,

the WVD introduces pseudo-information in the T–F
domain in the form of inner cross-terms [15,25]. In
particular, these cross-terms become severely problematic
when the IF is nonlinear and highly-varying over time.
Complex-time argument TFDs and PWVDs have been
suggested to improve the estimation of highly-varying
and/or nonlinear IFs by employing the higher order
derivatives of the IP in the time-lag domain. The general
form of an N-order TFD with a complex-time argument is
defined as [19]

CTDðNÞ
z ðt; f Þ ¼

Z ∞

−∞
PðθÞSMðt; f þ θÞCðt; f−θÞdθ ð7Þ

where N is an even integer, PðθÞ is a smoothing window
and SMðt; f Þ is defined as

SMðt; f Þ ¼
Z ∞

−∞
PðθÞSTFTðt; f þ θÞSTFTnðt; f−θÞdθ ð8Þ

where STFT stands for the short time Fourier transform.
Cðt; f Þ is given by

Cðt; f Þ ¼
Z ∞

−∞
PðθÞCrðt; f þ θÞCiðt; f−θÞdθ ð9Þ

where Crðt; f Þ and Ciðt; f Þ are defined based on the N
complex roots ωN;p on the unit circle ωN;p ¼ ejð2πp=NÞ

� �
.

Throughout this paper, we use the acronym CTD to refer
to this family of TFDs. To improve the concentration of
energy around the IF law (decreasing the spread factor2),
L-form of the CTDs was introduced in [19,26] as:

LCTDðN;LÞ
z ðt; f Þ ¼

Z ∞

−∞
∏
N=2

l ¼ 1
z t þ τ

LNðal þ jbl

� 	7 LðalþjblÞ
e−j2πf τdτ:

ð10Þ
2 Spread factor in the TFDs is a time-lag function which determines
the distribution spread around the instantaneous frequency [18].



Table 1
Definitions of the 4th order CTD and the 4th order PWVD.

TFD Definition

4th order CTD [19] CTDð4Þ
z ðt; f Þ ¼ R∞

−∞ z t þ τ
4

� �
zn t− τ

4

� �
z−j t þ j τ4

� �
zj t−j τ4
� �

e−j2πf τdτ
4th order PWVD [16] PWVDð4Þ

z ðt; f Þ ¼ R∞
−∞ z t þ τ

4

� �� �2 zn t− τ
4

� �� �2e−j2πf τdτ
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The definition of the polynomial WVD (PWVD) with
order N is given by [16]

PWVDðNÞ
z ðt; f Þ ¼

Z ∞

−∞
∏
N=2

l ¼ 1
zðt þ hlτÞznðt þ h−lτÞe−j2πf τdτ ð11Þ

where N is an even integer and hl ðl¼ 1; …; N=2Þ are
constant real coefficients. For example, Table 1 presents
the mathematical descriptions of CTDð4Þ

z ðt; f Þ and 4th

PWVDð4Þ
z ðt; f Þ, while the definition of CTDð6Þ

z ðt; f Þ can be
found in [19].

The indicated TFDs go beyond the quadratic form of the
WVD to better concentrate the TF energy around the true
IF. This, however, means higher computational cost and
more vulnerability to noise. In this paper, we propose an IF
estimation method which uses a TFD representing the
second order of the phase derivative for maximum robust-
ness and minimum computational cost, while preserving
the ability of tracking fast-changing IFs in monocompo-
nent nonstationary signals. The original WVD, the 4th

order L-form CTD (LCTDð4;3Þ
z ðt; f Þ; L¼ 3) and the 6th order

L-form CTD (LCTDð6;3Þ
z ðt; f Þ; L¼ 3) are employed in order to

evaluate the performance of the proposed approach using
simulated monocomponent signals.

Theoretically, a higher order differentiation of the IP in
the CTDs and PWVDs yields more accurate estimation of
the highly-varying IFs (smaller spread factor [18]). But, it is
at the expense of higher computational complexity and
vulnerability to noise. The proposed approach provides a
robust estimate of the derivative of the IP function using a
lower order CTD as a variant of the CTDs family [18]. We
show that the method is comparable, and in some cases,
more efficient than the IF estimators based on LCTDs
[17,19] in noisy and highly nonstationary environments.
To evaluate the methods, we have adapted the general
form of the simulated nonstationary signals in Virtual
Instrument toolbox [19].
3. Design of a complex-time distribution for IF
estimation

This section describes the methodology for designing
the lower order CTD and lists its properties, while the
mathematical proofs can be found in the Appendix. We
also discuss the numerical implementation aspects and
other related practical issues.
3 Truncation error is generated when an infinite sum is truncated
and approximated by a finite sum.
3.1. A modified form of the WVD: definition and properties

The complex-time argument differentiation introduced
in [18] is based on a Taylor series expansion of a real
function φðtÞ about a real point t using a purely imaginary
step jτ as follows:

φðt þ jτÞ ¼ φðtÞ þ jτφ′ðtÞ− τ2φ″ðtÞ
2!

−j
τ3φ‴ðtÞ

3!
þ⋯: ð12Þ

Taking the imaginary parts from both sides of Eq. (12)
and dividing them by τ will result in an approximation for
φ′ðtÞ, referred to as complex-step differentiation (CSD)
given by [22]:

φ′ðtÞ≈ Imfφðt þ jτÞg
τ

: ð13Þ

The general form of the IAF in Eq. (4) can be written
based on the CSD formulation presented in Eq. (13)
yielding a new form for the signal kernel Kzðt; τÞ. By
substituting Eq. (13) into Eq. (4), we obtain:

ejφ′ðtÞτ≈ejImfφðtþjτÞg ð14Þ
where τ is small. According to Eq. (1), zðt þ jτÞ ¼ ejφðtþjτÞ and
therefore, the signal kernel given by Eq. (14) can be
written as

Kzðt; τÞ ¼ ejImfφðtþjτÞg ¼ jzðt þ jτÞj−j ð15Þ
where j:j represents the absolute value operator. The
proposed CTD is then defined as the Fourier transform of
Kzðt; τÞ with respect to τ:

WCL
z ðt; f Þ ¼ ℱ

τ-f
fKzðt; τÞg ¼

Z ∞

−∞
9zðt þ jτÞ9−je−j2πf τdτ: ð16Þ

The WCL
z ðt; f Þ given in Eq. (16) can be written as the general

form of an energy distribution concentrated along its IF:

WCL
z ðt; f Þ ¼

Z ∞

−∞
ejτϕ

0
tð Þ−jτ33!ϕ3ðtÞþjτ

5
5!ϕ

5ðtÞþ⋯e−j2πf τdτ

¼ 2πδð2πf−φ′ðtÞÞn
f
ℱ
τ-f

fejQ ðt;τÞg ð17Þ

where Q ðt; τÞ is the spread factor of WCL
z ðt; f Þ given by

Q ðt; τÞ ¼−
τ3

3!
ϕ3ðtÞ þ τ5

5!
ϕ5ðtÞ þ⋯: ð18Þ

Performing the same calculation for the WVD, we get
the spread factor as

QWVDðt; τÞ ¼
τ3

223!
ϕ3ðtÞ þ τ5

245!
ϕ5ðtÞ þ⋯ : ð19Þ

Compared to the CTDs and PWVDs with N42, similar
to the WVD, WCL

z ðt; f Þ preserves the first order of the phase
derivative only which in turn leads to a higher truncation
error3 (order Oðτ2Þ) reflected in its spread factor Q ðt; τÞ (Eq.
(18)). However, there is another source of error in using
finite difference approximations in the CTDs and PWVDs,
the so-called subtractive cancellation error [22,27]. As an
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example, the cause of this error is explained by the
expressions for the CTDð4Þ

z ðt; f Þ in Table 1. The signal kernel
of CTDð4Þ

z ðt; f Þ can be obtained by the approximation of φ′ðtÞ
to the fifth order using the Taylor series of φðtÞ with
complex arguments:

φ′ðtÞ≈ 1
jτ

φ t þ j
τ

4

� �
−φ t−j

τ

4

� �
þ jφ t þ τ

4

� �
−jφ t−

τ

4

� �h i
:

ð20Þ
This leads to the definition of the signal kernel Kzðt; τÞ

for the CTDð4Þ
z ðt; f Þ as follows:

Kzðt; τÞ ¼ ejφ′ðtÞτ≈eφ tþjτ4ð Þ−φ t−jτ4ð Þþjφ tþτ
4ð Þ−jφ t−τ

4ð Þ ð21Þ

≈z−j t þ j
τ

4

� �
zj t−j

τ

4

� �
z t þ τ

4

� �
zn t−

τ

4

� �
ð22Þ

Eq. (22) clearly shows that the signal kernel is affected by
the subtractive cancellation error between close values of
φðt þ ðτ=4ÞÞ and φðt−ðτ=4ÞÞ as well as φðt þ jðτ=4ÞÞ and
φðt−jðτ=4ÞÞ. The advantage of adapting Eq. (13) as the
phase derivative is that in most cases, the truncation error
can be alleviated by selecting small τ, without the risk of
increasing the subtractive cancellation error [22,27]. This
property makes the CSD approximation tools suitable for
sensitivity analysis, as they reflect issues of simple numer-
ical implementation, accuracy and robustness together
[24]. The lower order IF estimation method does not suffer
from the subtractive cancellation error. This makes the
method robust to noise, whilst maintaining a reasonable
computational cost. However, one should bear in mind
that choosing a too narrow lag window is not generally
recommended for computing T–F representations of sig-
nals with fast varying IFs, as it lowers the frequency
concentration and may introduce bias to the estimation.
The main difference between Eq. (13) and the phase
derivative used in the WVD (φ′ðtÞτ¼ φðt þ τ=2Þ− φðt−τ=2Þ)
is that the subtractive cancellation error can be avoided in
the former one.

The complex-time analytic associate zðt þ jτÞ needed for
computing CTDs can be obtained using the idea introduced
in [18,19]. Assuming that Zðf Þ is the Fourier transform of
the analytic associate zðtÞ, we have:

zðt þ jτÞ ¼
Z ∞

−∞
Zðf Þe−2πf τej2πf tdf : ð23Þ

and therefore:

zðt þ jτÞ ¼ℱ−1
t←f

fℱ
t-f

fzðtÞge−2πf τg: ð24Þ

It can be shown that the modified form of the WVD in
Eq. (16) satisfies most desired properties of a TFD as listed
below, for the signal zðtÞ with the general form of Eq. (1)

P1. Realness: WCL
z ðt; f Þ is always real at any time and

frequency.
P2. Time shift: if WCL

z ðt; f Þ is the TFD of the signal zðtÞ,
then WCL

z ðt−T ; f Þ is the TFD of the signal zðt−TÞ.
P3. Frequency shift: if WCL

z ðt; f Þ is the TFD of the signal
zðtÞ, then WCL

z ðt; f−f 0Þ is the TFD of the signal zðtÞej2πf 0t .
P4. Time–frequency scaling: if z1ðtÞ ¼ zðatÞ, then
WCL

z1 ðt; f Þ ¼ 1=jajWCL
z ðat; f =aÞ.

P5. Time marginal: integration of WCL
z ðt; f Þ over the
frequency axis (time marginal distribution) results in:Z ∞

−∞
WCL

z ðt; f Þdf ¼ jzðtÞj2; zðtÞ≠0: ð25Þ

P6. Instantaneous frequency: the first order moment of
WCL

z ðt; f Þ with respect to frequency yields the IF of the
signal zðtÞ:R∞
−∞ fWCL

z ðt; f ÞdfR∞
−∞ WCL

z ðt; f Þdf
¼ 1

2π
dfargðzðtÞg

dt
¼ 1

2π
dφðtÞ
dt

: ð26Þ

P7. Modulation invariance: if zðtÞ ¼ z1ðtÞz2ðtÞ, then:
WCL

z ðt; f Þ ¼WCL
z1 ðt; f Þnðf ÞW

CL
z2 ðt; f Þ: ð27Þ

The mathematical proofs of the above properties can be
found in the Appendix.

3.2. A lower order CTD based on the modified WVD

The dichotomic impact of the lag window length in the
proposed lower order CTD may impose unwanted fluctua-
tions in the T-F domain which can be attenuated using e.g.
Gaussian filtering. The final representation of the proposed
lower order CTD is therefore given by

ρCLz ðt; f Þ ¼ ℱ
τ-f

fg2ðτÞfKzðt; τÞnnðt;τÞ
g1ðt; τÞg ð28Þ

where g1ðt; τÞ is a local time-lag Gaussian filter and g2ðτÞ is
a Gaussian lag-window. Note it is also necessary to apply
similar filtering on the whole family of CTDs in general (for
example, see Eqs. (7)–(9)). In order to extract the IF law of
monocomponent nonstationary signals, the ridge (peak
frequency at each time sample) of the TFDs can be used
(see Table 3).

3.3. Numerical implementation of the lower order CTD

The lower order CTD can be described in the discrete-
time domain as

WCL
z n; k

 �¼ ℱ

m-k
fKz n;m½ �g ð29Þ

where Kz½n;m� ¼ jz½nþ jm�j−j andℱm-k denotes the discrete
Fourier transform from the lag domain to the frequency
domain. The discrete-time form of the complex-time analytic
associate z½nþ jm� is obtained using [18]:

z nþ jm½ � ¼ 1
N

∑
Nsig

k ¼ 1
Z k

 �

e
−2πmk

Nsig e
j2πnkNsig ð30Þ

where Z½k� ¼ℱfz½n�g and Nsig is the length of z½n� in samples.
In practice, direct usage of Eq. (30) for the final-length digital
signals does not lead to satisfactory results [28]. In fact, a
finite-duration signal can be considered as the multiplication
of an infinite signal with a rectangular window in the time
domain. Such temporal multiplication creates new smearing
components in the frequency domain (also referred to as
spectral leakage) spreading throughout the whole time-lag
plane (see also Eqs. (23) and (24)). In addition, Eq. (30)



Table 2
List of the IP laws used for generating the simulated signals.

Signal φðtÞ IP law ()

A 3cos½πn� þ 2cos 2πn½ �−3cos½3πn�
B 3cos½2πn� þ 0:75cos 6πn½ � þ 0:75cos½10πn�
C 3cos½πn� þ 0:5cos 15πn½ � þ 0:5cos½12πn�

A. Omidvarnia et al. / Signal Processing 93 (2013) 3251–3260 3255
requires sample points in the discrete version of zðt þ jτÞ
which are not available in z½n� and are only approximated by
interpolation. It results in another source of approximation
error in the numerical implementation of z½nþ jm�. Therefore,
although the continuous forms of the CTDs are real-valued for
the general signal type of Eq. (1), the numerical formsmay not
be necessarily real-valued. In order to avoid the cross-terms
arising due to the aforementioned problems, time-lag filtering
is included to the numerical implementation of all CTDs (see
also Eqs. (7)–(9)). For the proposed TFD, a local time-lag
Gaussian filter g1½n;m� with the size h; h


 �
; h∈ℕ and the

standard deviation s1 is convolved to Kz½n;m�. Another
Gaussian lag-window g2½m� with the standard deviation s2
also suppresses the remaining fluctuations in the frequency
domain. The final realization of the lower order TFD ρCLz ½n; k� is
expressed as

ρCLz n; k

 �¼ ℱ

m-k
f g2 m½ �ðKz n;m½ � nn

ðm;nÞ
g1 n;m½ �Þ

� 

g

¼ ∑
Nsig

m ¼ 1
∑
h=2

p ¼ −h=2
∑
h=2

q ¼ −h=2
g2 m½ �g1 p; q½ �Kz n−p;m−q½ �ej

2πmk
Nsig :

ð31Þ
For the proposed lower order CTD, the standard devia-

tions s1 and s2 were set to 1 and 10, respectively. Note that
g1 and g2 do not need to be Gaussian necessarily. See e.g.
the windows g1 and g2 used in [29]. Gaussian filtering
ðs¼ 7Þ was also performed for both 4th and 6th order CTDs
[19]. Also, the lag window length for the WVD was set to
Nsig−1. MATLAB implementations of the CTDs were pro-
vided from Virtual Instrument toolbox [19] and the WVD
implementation was obtained from the TFSA toolbox [30].

3.4. IF estimation

According to the property P6 of WCL
z ðt; f Þ, the first order

moment of ρCLz ½n; k� with respect to frequency provides an
estimate of the IF law of the monocomponent nonsta-
tionary signals. Also, by definition, the dominant knife-
TFD
Signal WVD LCTD4

A

B

C

Fig. 1. Absolute values of the TFDs extracted from 2 s segm
edge ridge of ρCLz ½n; k� (associated with the spectral maxima
of the TFD along the time axis) leads to an estimate of the
IF [1]. The discrete-time linear moment IF estimator is
defined as [1]

f̂ i n½ � ¼ Fs
2Nsig

∑Nsig−1
k ¼ 0 kρCLz ½n; k�

∑Nsig−1
k ¼ 0 ρCLz ½n; k�

1onoNsig ð32Þ

whereas the peak frequency is given by [1]

f̂ i n½ � ¼ 1
2Nsig

f argf max
k

ρCLz n; k

 �� 


g−Nsig

2

� 

g 1onoNsig

ð33Þ

where ρCLz ½n; k� is of the size Nsig � Nsig . Note that the
subscript i is not an index number, but it stands for
‘instantaneous’. The definition of the peak frequency will
be used in this study to extract the IF laws of three
nonstationary signals in the absence or presence of noise
to evaluate the performance of different TFDs.
4. Performance evaluation and discussion

In this section, the proposed IF estimation method and
four other existing methods are applied on selected
simulated signals. The normalized root mean squared
error (NRMSE) cost function is used to compare the
performance of the different estimators.
LCTD6 Lower-order CTD

ents of the simulated signals introduced in Table 2.
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4.1. Performance measure

In order to evaluate the performance of the proposed IF
estimation method, 128-sample segments of three mono-
component nonstationary signals with IP laws listed in
Table 2 were simulated ðFs ¼ 64 HzÞ. The general form of
the simulated signals was taken from the Virtual Instru-
ment toolbox [19], designed for T-F analysis of signals with
highly nonstationary IF laws. Then, the performance of the
IF estimators based on the peak of WVD, 4th order LCTD
(LCTD4) and 6th order LCTD (LCTD6) [19] were compared
against the proposed method. The comparison results
were quantified with the NRMSE of the IF estimation over
a large number of Monte-Carlo simulations defined as:

NRMSE¼ 1−
1

NMC
∑
NMC

r ¼ 1

∥f i−f̂ i
r
∥

∥f i−meanðf̂ ri Þ∥
ð34Þ

where ∥.∥ represents the Euclidian norm, f̂
r

i is the IF
estimate at the run r and NMC is number of Monte-Carlo
runs (here, NMC ¼ 100Þ (note that, as mentioned before, the
subscript i stands for ‘instantaneous’). The NRMSE mea-
Fig. 2. Original IF laws and the estimated IF laws for the simulated signals in T
signal C.
sure ranges between −∞ (bad fit) to 1 (perfect fit) between
the reference IF function ðf iÞ and its estimated version ðf̂ iÞ.
4.2. Simulation results

The IP of the simulated signals are listed in Table 2.
Fig. 1 illustrates the TFDs extracted from the simulated
signals of length 128 sample ðFs ¼ 64 HzÞ, detailed in
Table 2.

In Fig. 1, each row corresponds to one of the three
simulated signals and each column represents the outputs
of a certain TFD for the simulated signals.

Fig. 2(a)–(c) illustrates the estimated IF laws of the
simulated signals in Table 2 using the frequency peak IF
estimator. Each panel depicts the original IF law as well as
its estimated versions using LCTD of order 4, LCTD of order
6, the WVD and the lower order CTD.

Table 3 summarizes the performance evaluation results
using the NRMSE measure for the above signals in the
absence of noise.
able 2 using the peak frequency estimator: (a) signal A, (b) signal B and (c)



Table 3
NRMSE cost (between the estimated IFs and original IFs using the peak
frequency estimator).

Signal Method

WVD LCTD4 LCTD6 Lower order CTD

Signal A −0.13 0.92 0.92 0.88
Signal B −0.08 −0.23 0.80 0.71
Signal C 0.00 −0.35 0.58 0.57
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4.3. Noise analysis

Robustness of the IF estimators in the presence of noise
was assessed using Monte-Carlo simulations with 100
iterations. In each iteration, white Gaussian noise pro-
cesses with different signal to noise ratio (SNR) covering
the interval −10 to 20 dB were added to the simulated
signals described in Table 2. The IF estimation methods
were applied to the noisy signals and the average NRMSE
measure was calculated.

Fig. 3 illustrates the performance of the methods for
the three selected simulated signals.

4.4. Discussion

The previous results illustrated the usefulness of robust
estimation of highly-varying nonlinear IF in monocomponent
signals under noisy circumstances using the proposed lower-
order CTD. The performance of the method evaluated using
the NRMSE cost function for three simulated signals indicates
that in the absence of noise, the variance of the IF estimate
using the lower order CTD is higher than LCTD6 (Fig. 2). This
relates to the fact that the spread factor of the lower order
Fig. 3. NRMSE measure for different IF estimators appl
CTD (Eq. (18)) preserves lower orders of the exponential lag
terms in the Taylor series expansion of the IP function. Also, as
the dynamics of the signals gets faster (the nonlinear IF
changes more rapidly), the bias of the estimate increases
compared with LCTD6 (see Fig. 2). This is also reflected in the
decreasing trend in the NRMSE measures of the lower order
CTD in Table 3. LCTD4 performs well for nonlinear IFs with
moderate variation, but it degrades drastically when the IF
law changes more rapidly (notice the drop in the NRMSE
measure of LCTD4 from 0.92 for signal A to −0.23 and −0.35
for signal B and signal C, respectively). As expected, the WVD
ied on signal A (a), signal B (b) and signal C (c).
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shows the lowest performance among all TFDs of this study in
the absence of noise.

In the presence of noise, LCTD4 outperforms LCTD6 for
all three simulated signals implying that an increase in the
order of LCTDs may have negative impact on robustness to
noise. At low levels of noise (5 to 20 dB), LCTD4 shows the
highest performance among other TFDs for signal A
(Fig. 3a), while it degrades for signal B and signal C with
more rapid-changing IFs. A mild but consistent decreasing
trend in the performance of LCTD4 on signal B and signal C
within 5–20 dB SNR interval suggests that the highly-
changing behavior in the less noisy signals is more
destructive compared with heavily noisy signals, as the
performance may be dominated by the speed of variation
in the IF law rather than the noise level. Although LCTD6
represents less error estimate than the proposed lower-
order CTD on noiseless signals (Table 3), it decays con-
siderably in noisy conditions (even low levels) in contrast
to the lower order CTD (see Fig. 3). In the highest changing
situation (i.e., signal C), LCTD4 and LCTD6 are even less
efficient than the classical WVD re-emphasising the
dichotomic role of the Taylor series order on the LCTD-
based IF estimation methods. It suggests that preserving
the higher order derivatives in IF estimation methods may
make the estimator more vulnerable to noise. One, how-
ever, should note that such robustness is obtained at the
expense of increase in the bias and spread of the IF
estimates.

Lower order CTD outperforms the other distributions
during highly noisy conditions (-10 to 5 dB—see Fig. 3) by
showing an increasingly robust behavior on all three simu-
lated signals. Performance of the WVD and LCTD4 is more or
less the same as reflected in their NRMSE measures starting
almost from −0.6 and reaching roughly to −0.2. LCTD6 shows
the weakest performance amongst the other TFDs in this SNR
interval, while its efficiency recovers monotonically by redu-
cing the noise level. All in all, the lower-order CTD combined
with the IF peak detector maintains its performance for highly
noisy environments (−10 to 5 dB) in terms of the NRMSE
measure, while the other CTD-based estimators lose their
efficiency significantly (see Fig. 3).

This study deals only with the case of nonstationary
monocomponent signals. It can be extended to multicompo-
nent nonstationary signals by using signal decomposition
methods such as T-F blind source separation [9] or by
designing data dependent reduced interferences TFDs for
the multicomponent signals case [11]. Further work could
also focus on exploring other possible forms of lower order
CTDs with less bias and variance of the IF estimate to
maximize the estimation accuracy while preserving robust-
ness to noise.

5. Conclusion

This paper presents a robust method for estimating highly-
changing nonlinear IFs in monocomponent signals using a
lower order CTD based on the general concept of complex-
time argument differentiation [18]. The proposed IF estima-
tion approach retains the high tracking ability of the IF law
with robustness to noise while avoiding issues related to the
interference terms. The performance of the approach was
evaluated and compared with the classical WVD as well as the
L-form CTDs which are capable of dealing with highly
nonstationary signals [19,26]. In high levels of noise (SNR of
−10 to 5 dB), the proposed lower-order CTD (used in con-
junction with the peak frequency detector) generates the
lowest NRMSE cost amongst the other methods compared
in this study. For higher SNRs (5 to 20 dB) and highly-
changing nonlinear IFs, the lower-order CTD also outperforms
the others. However, the bias and variance of the proposed
method is higher than the 4th and 6th order LCTDs in the
absence of noise. The findings suggest that avoiding high
order derivatives in IF estimation methods improves their
robustness to noise. The proposed method can be extended to
multicomponent nonstationary signals by using nonstationary
signal decomposition approaches such as time–frequency
blind source separation [9] and reduced interferences realiza-
tion [11], with the potential of allowing more advanced
applications of time–frequency signal analysis in various fields
of science, engineering and medicine.
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Appendix. Key steps for the new TFD properties proofs

P1. Realness: WCL
z ðt; f Þ is always real for signals with the

general form described in Eq. (1).

Proof. Let us consider the case where the function φðtÞ is
differentiable or more generally, φðzÞ is holomorphic
(analytic). From the basic properties of holomorphic func-
tions, we have:

φðzÞn ¼ φðznÞ
⇒Refφðt þ jτÞg−jImfφðt þ jτÞg ¼ Refφðt−jτÞg þ jImfφðt−jτÞg:

ð35Þ

and:

Imfφðt−jτÞg ¼ −Imfφðt þ jτÞg ð36Þ

The complex conjugate of WCL
z ðt; f Þ is then written as

WCLn

z ðt; f Þ ¼
Z ∞

−∞
e−jImfφðtþjτÞgej2πf τdτ: ð37Þ

A change of variable from τ to –τ leads to

WCLn

z ðt; f Þ ¼−
Z −∞

∞
e−jImfφðt−jτÞge−j2πf τdτ¼

Z ∞

−∞
ejImfφðtþjτÞge−j2πf τdτ

¼WCL
z ðt; f Þ: ð38Þ

Therefore, the unsmoothed ρCLz ðt; f Þ is real.
P2. Time shift :if WCL

z ðt; f Þ is the unsmoothed distribution
of signal z(t), then WCL

z ðt � T ; f Þ is the unsmoothed dis-
tribution of signal z(t-T).
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Proof. Let WCL
z ðt; f Þ be a TFD of the signal zðtÞ with the

signal kernel KCL
z ðt; τÞ. The TFD with a shift in time can be

written as

WCL
z ðt−T ; f Þ ¼

Z ∞

−∞
KCL
z ðt−T ; τÞe−j2πf τdτ¼

Z ∞

−∞
ejImfφðt−TþjτÞge−j2πf τdτ:

ð39Þ
On the other hand, considering Eqs. (14) and (1), it
follows that KCL

z ðt−T ; τÞ is the signal kernel of the signal
zðt−TÞ.

P3. Frequency shift:if WCL
z ðt; f Þ is the unsmoothed TFD of

a signal zðtÞ, then WCL
z ðt; f−f 0Þ is the unsmoothed dis-

tribution of the signal zðtÞej2πf 0t .
Proof

z2ðtÞ ¼ zðtÞej2πf 0t ¼ ejðφðtÞþ2πf 0tÞ ¼ ejφ2ðtÞ

⇒φ2ðt þ jτÞ ¼ φðt þ jτÞ þ 2πf 0t þ j2πf 0τ: ð40Þ

KCL
z2 ðt; τÞ is then written as

KCL
z2 ðt; τÞ ¼ ejImfφ2ðtþjτÞg ¼ ejImfφðtþjτÞgej2πf 0τ: ð41Þ

WCL
z2 ðt; f Þ is obtained by taking the Fourier transform of

KCL
z2 ðt; τÞ:

WCL
z2 ðt; f Þ ¼

Z ∞

−∞
KCL
z2 ðt; τÞe−j2πf τdτ

¼
Z ∞

−∞
ejImfφðtþjτÞgej2πf 0τe−j2πf τdτ¼WCL

z ðt; f−f 0Þ: ð42Þ

P4. Time–frequency scaling: if WCL
z ðt; f Þ is the TFD of

zðtÞ; then the TFD of the scaled signal zðatÞ is 1=jajWCL
z

ðat; f =aÞ.
Proof:

z2ðtÞ ¼ zðatÞ ¼ ejφðatÞ⇒zðaðt þ jτÞÞ ¼ ejφðatþjaτÞ ð43Þ

The signal kernel is written as

KCL
z2 ðt; τÞ ¼ ejImfφðatþjaτÞg

⇒WCL
z2 ðt; f Þ ¼

Z ∞

−∞
KCL
z2 ðt; τÞe−j2πf τdτ

¼
Z ∞

−∞
ejIm φðatþjaτÞf ge−j2πf τdτ: ð44Þ

By changing variable τ′¼ aτ and substituting into Eq.
(44), we have:

adτ¼ dτ′⇒WCL
z2 ðt; f Þ ¼

1
jaj

Z ∞

−∞
ejImfφðatþjτ′Þge−j2πðf =aÞτ′dτ′

¼ 1
jajW

CL
z ðat; f =aÞ: ð45Þ

P5. Time marginal: integration of WCL
z ðt; f Þ over the fre-

quency axis (time marginal distribution) results in Eq. (25).

Proof. Using the DC offset property of the Fourier trans-
form for signals with the general form of Eq. (1), Eq. (25)
can be re-written as [16]
Z ∞

−∞
WCL

z ðt; f Þdf ¼ KCL
z ðt; τÞjτ ¼ 0: ð46Þ
Combining the right side of Eq. (46) and (15) leads directly
to Eq. (25).

P6. Instantaneous frequency: the first order moment
of WCL

z ðt; f Þ with respect to frequency yields the IF of
the signal zðtÞ.

Proof. The first order moment (i.e. the mean) of WCL
z ðt; f Þ

with respect to frequency is defined as [1]

〈f 〉t≜
R∞
−∞ fWCL

z ðt; f ÞdfR∞
−∞ WCL

z ðt; f Þdf
: ð47Þ

Using the DC offset and differentiation properties of the
Fourier transform, Eq. (47) can be expressed as [16]

〈f 〉t ¼
1
2πj

∂KCL
z ðt;τÞ
∂τ jτ ¼ 0

KCL
z ðt; τÞjτ ¼ 0

: ð48Þ

From Eq. (15), the derivative of KCL
z ðt; τÞ with respect to τ in

Eq. (48) is given by

∂KCL
z ðt; τÞ
∂τ

¼ j
∂Imfφðt þ jτÞg

∂τ
ejImfφðtþjτÞg: ð49Þ

Combining Eqs. (12) and (49) results in:

∂Imfφðt þ jτÞg
∂τ

¼ φ′ðtÞ− τ2

2!
φ

000 ðtÞ þ… ð50Þ

Combining Eqs. (48)–(50) leads to 〈f 〉t in Eq. (48) which in
turn, results in the instantaneous frequency of WCL

z ðt; f Þ at
time t (Eq. (26)).

P7. Modulation invariance: if zðtÞ ¼ z1ðtÞz2ðtÞ and z1ðtÞ
and z1ðtÞ are of the form of Eq. (1) then WCL

z ðt; f Þ is
obtained by Eq. (27).

Proof. Suppose z1ðtÞ ¼ ejφ1ðtÞ and z2ðtÞ ¼ ejφ2ðtÞ. The IAF
KCL
z ðt; τÞ is then given by

KCL
z ðt; τÞ ¼ jzðt þ jτÞj−j ¼ jz1ðt þ jτÞj−jjz2ðt þ jτÞj−j ¼ Kz1 ðt; τÞKz2 ðt; τÞ:

ð51Þ

Taking the inverse Fourier transform of Eq. (51) with
respect to τ leads to Eq. (27).
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