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Abstract—Oesophageal speech, a mode of speech for laryngec-
tomees, is of low quality and intelligibility comparative to normal
(laryngeal) speech. Understanding the signal differences between
oesophageal and normal speech will help future oesophageal
speech enhancement methods. We aim to produce a method
to synthesise oesophageal speech using a simple source–filter
model. In this paper, we fit a parametric glottal waveform model
to speech samples in our oesophageal database. (This glottal
waveform represents the source component in the source–filter
approach.) We added coloured noise to the glottal waveform
model to produce realistic sounding oesophageal speech. Our
fitting error measure, a spectral distance measure, reduces for
all tested speech samples when adding the coloured noise. Yet
missing from our synthesised signal is the rough-sounding quality
often present in oesophageal speech. This work represents the
first steps in developing a method to synthesise oesophageal
speech.

I. INTRODUCTION

Oesophageal speech is a mode of speaking without a larynx.
Laryngectomees, people who have had a larynx removed in
surgery, are without a glottis and no longer have an airway
from the trachea to the vocal tract. Thus the normal, or laryn-
geal, mode of speaking is not possible for laryngectomees.
Oesophageal speech involves expelling air up through the
oesophagus while vibrating the upper part of the oesophagus;
this part of the oesophagus therefore acts as a neoglottis.
Oesophageal speech has been described as rough, course,
harsh, awkward, with low intelligibility comparative to normal
(laryngeal) speech [1]–[3].

Signal processing methods can play an important role in
improving the quality and intelligibility of oesophageal speech
and thus improve the quality of life for oesophageal speakers.
Existing methods have shown this potential, for example the
methods in references [4]–[7]. Yet further progress is war-
ranted to produce a suitable system capable of transforming
oesophageal speech into normal speech without losing speaker
identity or speech emotion.

Our goal is to synthesise realistic-sounding oesophageal
speech. We believe that in doing so we can better understand
the specific signal characteristics of oesophageal speech. This
information will, in turn, help produce new speech enhance-
ment methods. Another benefit to synthesising oesophageal
speech is that we will be able to generate unlimited sam-
ples of (synthesised) oesophageal speech. Our approach is to
convert normal speech to oesophageal-sounding speech, and
thus a third benefit is that we will be able to use objective
measures [8] to quantify the improvement for oesophageal
speech enhancement methods. Objective measures could be

used because we have the reference signal, in this case the
normal speech signal.

This paper reports our work-in-progress to producing a
method to synthesise oesophageal speech. We use the standard
linear predictive coding (LPC) approach which is a simple
source–filter model of the physical speech production system.
The vocal tract is modelled by an autoregressive (AR) model
and the glottis, or neoglottis, is modelled by a parametric
glottal flow model. The aim is to quantify the parameters
of oesophageal and normal speech, compare the differences
between two parameter sets, and then develop a method to map
the distribution of normal speech parameters to a distribution
for oesophageal speech.

We started with a glottal flow model for this paper and fitted
a two-parameter glottal model to both oesophageal and normal
speech samples. The database used consisted of sustained
vowels and words spoken in Spanish. The two parameters
were fitted using nonlinear programming and optimised to
minimise the Itakura–Saito spectral distance [9] function. We
also added coloured Gaussian noise to the parametric model
to enable a better fit to the data. The coloured noise was added
to flatten the resultant spectrum of the glottal flow model. We
concluded from informal listening tests that the glottal model
plus coloured noise produced similar sounding speech samples
although in some samples the roughness commonly associated
with oesophageal speech was not present.

II. METHODS

Linear prediction coding (LPC) is a speech (voice) coder
method. The method is a simple model of the physical speech
production system, using an autoregressive (AR) model to
represent the vocal tract and a simple parametric model to
represent the glottal waveform. The speech signal is segmented
into frames, short-time epochs of speech, and the parameters
for the vocal tract (filter) and the glottal waveform (source)
are estimated in this analysis stage. For the synthesis stage,
the source and filter are constructed from the parameters and
the source is filtered to produce the synthesised speech [10].

Even though this source–filter approach is a linear time-
invariant system and therefore a simplification of the real
speech production mechanism, it has been successfully used
as a voice coding method. The speech signal for a particular
frame is thus represented as

s(n) =

P∑
l=1

als(n− l) + e(n) (1)



where s(n) is the discrete speech signal, al are the AR coef-
ficients, P is the order of the model, and e(n) is the residual
signal [10]. The residual signal e(n) is a crude approximation
to the glottal waveform because the interaction between the
glottal flow and the vocal tract is more complicated than a
linear time-invariant system. Yet for many applications this
approximation is sufficient [10].

Once we have estimated the AR parameters, we can use the
inverse filtering method to estimate the glottal waveform; that
is, we use e(n) as an estimate of the glottal waveform as

e(n) = s(n)−
P∑
l=1

als(n− l). (2)

In our analysis we used a frame size of 40 ms with a Hamming
window and an overlap between successive frames of 50%.
We estimated the AR coefficients using an AR model set to
P = 12. After inverse filtering we obtained e(n) and then
used a threshold-based method to estimate the fundamental
frequency [5].

A. Parameter Selection

LPC methods encode the source signal e(n) by replacing
it with a parametric model of e(n). These models range
in complexity from the simple, zero-parameter, impulsive–
train model to the 10-parameter glottal flow derivative models
with added aspiration noise [11]. For our study, we used the
following 2-parameter glottal flow derivative model [12], [13],

g(n) =

{
2cn− 3dn2, 0 ≤ ON0

0 ON0 < n < N0 − 1
(3)

where

c =
27A

4(O2N0)
, d =

27A

4(O3N2
0 )
.

The parameter A represents the peak amplitude of the glottal
flow, as a ratio to N0; parameter O represents the open quotient
of the glottal source, again as a ratio to N0; and N0 is the
(discrete) period of the frame under analysis. Note we use the
glottal flow derivative and not the glottal flow to account for
the lips radiation effect [10].

To estimate the parameters A and O, we fitted the model
in (3) to the residual signal e(n) using a spectral distance
measure. We used the Itakura–Saito spectral distance measure
[9]

ε =
1

N

L−1∑
k=1

(
E(k)

G(k)
− ln

E(k)

G(k)
− 1

)
(4)

where E(k) is the magnitude spectrum of residual signal and
G(k) is the magnitude spectrum of glottal waveform model.

We used nonlinear programming to find the minimum value
of the error function ε within constrained ranges for the
parameters O and A. The open-quotient parameter O was
initialised to 0.6 and was restricted to the range [0.1,0.9]; the
amplitude parameter A was constrained to [Ainit/20, 10Ainit],
where Ainit is the initial value for A.

This initial parameter Ainit was set using the approach
described by Fu and Murphy [13]. This is as follows:

• convolve the residual signal e(n) with a 7-point Black-
man window;

• numerically integrate this smoothed residual function to
obtain an estimate of the glottal flow signal, U(n);

• let Ainit = Umax/N0, where Umax is the maximum value
of U(n).

B. Adding Noise

When we inverse filter, in (2), we unintentional extract the
spectral trend of the glottal flow derivative [14]. The conse-
quence of this poor estimation method means our residual
signal e(n) has a flat spectrum. A better estimate of the
glottal flow derivative would, however, contain a spectral trend
sloping downwards from the lower to higher frequencies [9],
[13].

To force the Rosenberg model to have a spectral flat
response, we add coloured Gaussian noise (CGN) to the
synthesised glottal model in (3). This Gaussian noise also
provides a model for aspiration noise and any other noise
source in the oesophageal glottal speech signal.

To colour the Gaussian noise we filtered white Gaussian
noise. This filter H(z) is the inverse of the estimated spectral
trend of the glottal waveform. We estimated this glottal spec-
tral trend by fitting a second-order AR model G(z) to the glot-
tal model and then inverted this filter so that H(z) = 1/G(z).

III. RESULTS

We fitted the glottal waveform model on a database of
sustained vowels—/a/, /e/, /i/, /o/, and /u/ in Spanish—
recorded from 4 oesophageal speakers and 4 normal (laryn-
geal) speakers. The histogram for the parameters A and O
are in Fig. 1. Both parameter distributions appear similar—
the open-quotient parameter O is concentrated around peaks
in the region [0.5N0, 0.6N0] and A is concentrated in the area
< 0.005 for both normal and oesophageal speech samples.

To validate the usefulness of adding the CGN to the Rosen-
berg glottal model, we plot the error measure, the Itakura–
Saito spectral distance measure, in Fig. 2. This figure shows
that for all speech samples tested the error function decreased
after the CGN was added, thus representing an improved fit
for the model.

To show an example of the glottal waveform model we
plot the time–frequency distributions (TFD) in Fig. 3. We
use a separable-kernel TFD and not the spectrogram here to
achieve finer time–frequency resolution [15]. We computed a
decimated TFD using the algorithms in [16], [17].

IV. DISCUSSION

Informal listening tests indicate that the synthesised speech
using the glottal flow model plus the CGN sounds closer
to the original oesophageal speech sample comparative to
the synthesised speech using the glottal flow model without
noise. This observation is consistent with the error function
measurements in Fig. 2. Although we note an improvement
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(a) original sample
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(b) glottal model without noise
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(c) glottal model with noise

Fig. 3. Time–frequency distributions of oesophageal speech of vowel /a/. The plots in (b) and (c) use the two-parameter Rosenberg model; the TFD in (c)
uses Rosenberg model plus coloured Gaussian noise.

with the added CGN, our synthesised speech contains a larger
degree of aspiration noise; more so than is apparent on the
original (unprocessed) speech samples. Also, the synthesised
speech is missing the rough quality common to oesophageal
speech. We therefore need to investigate further to be able to
reproduce this rough quality.

It is important to be aware of the limitations of our approach.
The residual, obtained from inverse filtering, is a poor estimate
of the glottal flow derivative signal. Yet there is probably little
we can do to remedy this without an accurate measurement of
glottal closure instants (which we did not have for our study).
Of course, we need to be aware that the neoglottis of the
oesophageal speaker is not the same as the glottis of normal
(laryngeal) speakers. Thus even the concept of measuring
glottal closure instants may not be suitable for oesophageal
speakers. In fact, even the glottal waveform models may not
be suitable for oesophageal speakers and better results may be
obtained by deriving new models.

Another limitation of our approach is that our error function,

the Itakura–Saito measure, ignores the phase of signal. This
phase may be important for re-creating oesophageal sounding
characteristics, as we know that phase contains significant
information for speech signals [18], [19].

At this early stage we have little to conclude, but we
now emphasise the importance of future work. First, we need
to capture the rough-sounding characteristics of oesophageal
speech into the glottal model. Next, we need to characterise the
filter parameters for this source–filter approach. We will study
the distribution and spectral characteristics of the noise of
the line-spectral-pair coefficients which are used to model the
vocal tract transfer function. Finally, we need to generate both
the source and filter models, together, from normal (laryngeal)
speech to produce the final synthesised speech.

REFERENCES

[1] J. K. MacCallum, L. Cai, L. Zhou, Y. Zhang, and J. J. Jiang, “Acoustic
analysis of aperiodic voice: perturbation and nonlinear dynamic proper-
ties in esophageal phonation.” J. Voice, vol. 23, no. 3, pp. 283–90, May
2009.



0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.005

0.01

0.015

0.02

0.025

O

A

 

 

0

10

20

30

40

50

60

70

80

90

100

(a) normal speech

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.005

0.01

0.015

0.02

0.025

O

A

 

 

0

5

10

15

20

25

30

(b) oesophageal speech

Fig. 1. Histogram for the glottal parameters A and O using sustained vowels.

[2] B. Garcia, I. Ruiz, and A. Mendez, “Oesophageal speech enhancement
using poles stabilization and Kalman filtering,” in Proc. 2008 IEEE Int.
Conf. Acoust., Speech, Signal Process. Las Vegas, NV: IEEE, Mar.
2008, pp. 1597–1600.

[3] N. Yan, M. L. Ng, D. Wang, V. Chan, and L. Zhang, “Nonlinear
Dynamics of Voices in Esophageal Phonation,” in 33rd Annu. Int. Conf.
IEEE-EMBS, Boston, MA, 2011, pp. 2732–2735.

[4] Y. Qi, “Replacing tracheoesophageal voicing sources using LPC synthe-
sis,” J. Acoust. Soc. Amer., vol. 88, no. 3, pp. 1228–1235, Sep. 1990.

[5] Y. Qi, B. Weinberg, and N. Bi, “Enhancement of female esophageal
and tracheoesophageal speech,” J. Acoust. Soc. Amer., vol. 98, no. 5,
pp. 2461–2465, Nov. 1995.

[6] K. Matsui and N. Hara, “Enhancement of esophageal speech using
formant synthesis,” in Proc. 1999 IEEE Int. Conf. Acoust., Speech, and
Signal Process., vol. 1, 1999, pp. 81–84.

[7] R. H. Ali and S. B. Jebara, “Esophageal speech enhancement using
source synthesis and formant patterns modification,” in Signal Process.
for Image Enhancement and Multimedia Process., ser. Multimedia Sys-
tems and Applications Series, E. Damiani, K. Yétongnon, P. Schelkens,
A. Dipanda, L. Legrand, and R. Chbeir, Eds. Boston, MA: Springer
US, 2008, vol. 31, pp. 279–288.

[8] P. Loizou, Speech Enhancement: Theory and Practice (Signal Processing
and Communications), 1st ed. CRC, 2007.
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