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Abstract—Periodic lateralized epileptiform discharges (PLEDs)
are EEG waveforms that can occur after brain injury or disease.
The time-varying periodicity, or instantaneous frequency, of the
PLEDs is a potentially important prognostic feature. Estimating
the instantaneous frequency, however, is difficult because of the
concurrent presence of background activity and artefacts. Here
we present a method to enhance the instantaneous frequency
features in the joint time–frequency domain. The procedure 1)
enhances the PLED spikes in the time-domain using a simple
energy operator; 2) transforms to the time–frequency domain
using a separable-kernel distribution; and 3) uses a homomor-
phic filtering approach, within the time–frequency domain, to
remove spectral modulation. Existing methods for instantaneous-
frequency estimation are then applied to this enhanced time–
frequency distribution. We show working examples with EEG
epochs but have yet to test the method over an entire EEG
database.

I. INTRODUCTION

The electroencephalogram (EEG) can provide important di-

agnostic and prognostic information to the clinician. The EEG,

which records electrical activity on the scalp using an array of

electrodes, is routinely used in clinical settings to assess brain

injury or brain disease [1]. Periodic lateralized epileptiform

discharges (PLEDs) is the name given to a heterogeneous

class of EEG waveforms which repeat at almost periodic

intervals [2]. Studies have shown that PLEDs may represent

ictal activity [3], [4]. And EEG-ictal activity warrants prompt

neuroprotective treatment [4]. But for PLEDs which do not

represent ictal activity [5] then treatment is neither necessary

nor appropriate [6]. Thus we propose two classes of PLEDs,

ictal PLEDs and non-ictal PLEDs, and aim to extract signal

processing features to discriminate between the two classes.

The methods presented here are a preliminary analysis for this

project. As already noted in previous studies, the time-varying

periodicity is associated with different prognostic classes of

PLEDs [4], [7]. This paper presents an approach to estimate

this time-varying periodicity, or instantaneous frequency (IF),

for PLEDs.

Many methods exist for estimating the IF of a signal

[8]–[14]. Most of these methods assume that the signal is

monocomponent, meaning there is only one frequency compo-

nent in the time–frequency domain [8]–[10]. Yet PLEDs are

not monocomponent signals. PLEDs are a series of almost-

periodic spikes or pulses [2]. And these time-varying spike or

pulse trains are signals with time-varying spectral harmonics

[15], [16] and are thus multicomponent signals. Most IF

estimation methods for multicomponent signals use a sequence

of peaks in the time–frequency domain to estimate the IFs

[12]–[14]. We found, however, that these methods are not

suitable for our PLED signals as EEG background activity

and artefacts make it difficult to estimate the correct peaks in

the time–frequency domain. What we present in this paper is

a pre-processing step for these multicomponent IF estimation

methods [12]–[14]. Specifically, we aim to enhance the time-

varying harmonic characteristics of the PLED waveforms in

the presence of nonstationary EEG background activity and

artefacts.

We present the following approach to emphasize the time-

varying harmonic structure of the PLEDs signals. First, we

enhance the peaks of the PLEDs waveforms by using the

Teager–Kaiser energy operator [17]. This method enhances

spike-like components [18]. Next, we transform this spike-

enhanced signal to the time–frequency domain. To do so, we

use a quadratic time–frequency distribution with a separable

kernel [11]. For the slowly-varying harmonic signals most

of the cross-term energy is suppressed for this kernel [13],

[16]. To remove the spectral envelope of the time–frequency

distribution, we apply a homomorphic filtering approach [19],

[20]. Specifically, we use the nonlinear transform to decon-

volve the modulating spectral envelope from the harmonic

signal. The use of the log transform means the convolution

can be expressed as an addition operation in the time–lag

domain. In this log-transformed time–lag domain, we apply

a high-pass filter to separate the harmonic signal from the

modulating spectral energy signal. Suppressing the spectral

modulation enables a more accurate estimate of the IF of the

harmonic signal. This final time–frequency distribution shows

enhanced time-varying harmonic components comparative to

the distribution of the original EEG signal. As this is a

preliminary study, we have yet to quantify the results with

the IF estimation methods; instead we provide some examples

using EEG signals with PLED waveforms.
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(a) 40 seconds EEG from channel P4–O2
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(b) a segment of the EEG epoch from (a)

Fig. 1. Segment of EEG signal with the periodic epilepiform waveforms
known as PLEDs. In (b) note the varying morphology of the waveform with
background activity between each discharge; also note the period between
discharges is approximately 1 second.

II. TIME–FREQUENCY ANALYSIS OF PERIODIC

DISCHARGES

The PLED waveform can vary in morphology from one

period to the next. Although the signal is defined as a periodic

series of spikes or sharp waves [2], the varying morphology

makes analysis difficult. In addition, other signal components

are present in the signal, such as background activity or

artefacts. Fig. 1 shows an example epoch of EEG with PLEDs.

In Fig. 1(b) we can see the background activity between the

PLEDs, which occur at intervals of approximately 1 second.

The approach we present here uses time–frequency analysis

to estimate the time-varying periodicity, or IF, of the PLEDs.

Because the IF is a function of both time t and frequency f ,

the time–frequency domain (t, f) is an obvious place to extract

IF information [11]. Signal energy is represented as peaks

in the time–frequency domain and continuous components

are displayed as continuous ridges in this domain. Many IF

estimation methods use the peak of these ridges as an IF

estimate [12]–[14]. It is therefore important for an accurate

IF estimate that the time–frequency domain displays a ridge

or peak around the IF.

Experimenting with the EEG database with PLED wave-

forms, we found it difficult to achieve this goal. Even with

the suppression of cross–terms [11] our time–frequency dis-

tribution was dominated by artefact energy making it difficult

to extract the IF. (Cross–terms are explained in more detail

in following Section II-C.) Fig. 2 shows a time–frequency

distribution of the EEG signal from Fig. 1, where even with

the removal of the high-energy artefact at 11–13 seconds,

the slowly-varying IF of the PLED waveforms is hard to

identify. Fig. 3 shows how a peak-extraction method [13] fails

to estimate the IF of the PLED activity: we expect, from

Fig. 1(b), an IF centred around 1 Hz.
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Fig. 2. Time–frequency distribution of the EEG signal in Fig 1. Note the
artefact at 11–13 seconds dominates the entire distribution. The plot only
displays the frequency range up to 15 Hz because little comparative signal
energy resides above this frequency.
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Fig. 3. Instantaneous frequency estimate using the time–frequency distribu-
tion in Fig. 2. The IF estimation method finds the peaks of the ridges in the
distribution [13].

A. Acquiring the EEG Data

The EEG data was recorded as part of a prospective

and observational study to discriminate ictal from non-ictal

PLEDs. The data was collected at a large teritary hospital

(Cruces Hospital, Bilbao, Spain) by the members of the

Clinical Neurophysiology Department (authors: IMS, ABAC,

and IYS). The recordings were taken from the routine EEG

exam for patients suspected of brain injury or disease. A

Neurofax (Nihon Khoden, Rosbach, Germany) EEG machine,

with 20 EEG channels in the standard 10–20 international

placement system, was used to record the data. We analysed

the data using a lateral-bipolar montage.

The first signal processing stage was to pre-process the data.

We used a finite impulse response (FIR) filter with a bandpass

region of 0.3–40 Hz. To preserve the time-domain features

of the signal, we used a zero-phase filter using the forward–

reverse method [21]. Next, we downsampled the signal from

the original sampling rate of 500 Hz to 100 Hz. Lastly,

large-amplitude artefacts were removed using the following

threshold approach: if the EEG signal s(t) at time instance t0
is greater than a predefined threshold, then set this signal to

zero and also the all adjecent samples within a small window
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(b) a segment of the EEG epoch from (a)

Fig. 4. EEG signal from Fig. 1 after emphasising the spikes with high-pass
filtering and applying the Teager–Kaiser energy operator. The original EEG
signal (in red) is offset by -20 µV to aid clarity.

frame; that is, if s(t0) > ζ at time t0 then let s(t0 + τ) = 0
for −L/2 ≤ τ ≤ L/2; and if s(t0) ≤ ζ then do nothing. We

set ζ to 300 µVs and L to 5 seconds.

B. Emphasising Peaks of Epileptiform Discharges

To emphasis the peaks of the epileptiform discharges we use

the Teager–Kaiser energy operator [17]. This simple method

has been used for the analysis of many biomedical signals,

including extracting spikes from EEG data [18]. The two stage

process is as follows. First, we high-pass filter the signal, with

a cutoff frequency of 3 Hz, to remove low frequency trends.

Again, we use the zero-phase finite impulse response filter

[21]. Then, we apply the energy operator [17] to the filtered

(discrete) signal s[n]:

y[n] = s[n+ 1]2 − s[n+ 2]s[n]. (1)

Fig. 4 shows the EEG sample from Fig. 1 processed by

this spike-emphasis approach. And Fig. 5 shows the time–

frequency distribution of this spike-enhanced signal. Although

the distribution now displays the spikes in time–frequency

domain there is still a lack of continuous slowly-varying

components to represent the IF of the PLEDs.

C. Design of the Time–Frequency Distribution

To aid the design process we start with a simple model of

the signal and make some assumptions to simplify the analysis;

we later justify these assumptions by testing with real signals.

Lets first assume that the slowly time-varying harmonic signal

can be modelled by a piecewise-linear frequency modulated

(FM) signal with harmonic components [15], [16]. For one

piece (segment) of this piecewise-linear FM signal, the signal

is a linear FM signal with K harmonics,

x(t) =
K+1
∑

q=1

e j2πt(qf0+αt/2) (2)
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Fig. 5. Time–frequency distribution of EEG signal in Fig. 4 after Teager–
Kaiser energy operation.

Here f0 represents the fundamental frequency and α the slope-

constant of the linear FM signal. The Wigner–Ville distribution

for an arbitrary, real-valued signal x(t) is defined as

Wz(t, f) =

∫ ∞

−∞

z(t+ τ
2 )z

∗(t− τ
2 )e

−j2πτfdτ

where the z(t) is the analytic associate of x(t) [11] and z∗(t)
is the conjugate operation. Assuming that the signal x(t) in

(2) is already an analytic signal, the Wigner–Ville distribution

of this signal is [22], [23]

Wx(t, f) =

K+1
∑

q=1

δ[f − (qf0 + αt)] +Wcross-terms(t, f) (3)

The Wigner–Ville distribution is an important distribution in

the class of quadratic time–frequency distributions as it can

resolve linear FM signals to time-varying delta functions, as

shown in this equation [11]. These delta functions are ideal

time–frequency representations for these signals. But there is

also another component to the distribution known as the cross-

terms; in (3) the cross-terms are in Wcross-terms(t, f). These

cross-terms create difficulty for signal interpretation and need

to be suppressed, or ideally removed, before further signal

analysis [11]. Minimising the effects of the cross-terms for

our time–frequency method is the first task. Before describing

the solution to this task we first present the second task.

The signal model in (2) produces a series of delta functions

with equal amplitude in the time–frequency domain. Real EEG

however has most of its energy concentrated around the lower

frequencies [15], [24]. To incorparate this spectral shaping into

our signal model x(t) we modulate the spectrum of x(t) with

a low-pass function; this is equivalent to convolving in the

time-domain with a function h(t),

y(t) = x(t) ∗ h(t)
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For our analysis here we use the Gaussian function defined in

time h(t) and frequency H(f) as

h(t;σ) = e−t2σ2

H(f ;σ) =

√

π

σ2
e−(πf)2/σ2

(4)

where σ controls the width of this window function. Assume

that we set σ so that H(f ;σ) is a wide-band signal and h(t;σ)
is narrowband. Thus H(f ;σ) represents the spectral trend or

envelope of the frequency-domain signal Y (f). The Wigner–

Ville distribution of y(t) is now

Wy(t, f) = H̄(f)

[

K+1
∑

q=1

δ(f − [qf0 + αt])

+ Wcross-terms(t, f))

]

∗
t
h̄(t) (5)

as [11]

Wy(t, f) = Wx(t, f) ∗
t
Wh(t, f)

with

Wh(t, f) = h̄(t)H̄(f)

and

h̄(t) = h(t;
σ√
2
); H̄(f) = h(f ;

σ√
2
)

Thus in (5), the delta functions are now modulated with

the low-pass function H̄(f). Also, the distribution Wx(t, f)
is convolved in time with the Gaussian function h̄(t). This

convolution will smear the components in the time direction.

Although (5) is a more realistic model of the PLEDs spike-

train compared to (3), we would like our analysis to produce

a time–frequency distribution closer to (3). Flattening the

spectrum has been shown to improve signal analysis for

particular EEG applications [25], [26]. Thus our second task is

to suppress the spectral modulation of the signal in the time–

frequency domain.

1) Task 1: Removing Cross-Terms: We would like to re-

move, or suppress, the cross-terms components in (3). This

should, ideally, not be at the expense of also suppressing

or smearing the auto-term components; in (3) the auto-

terms are the delta functions. In practice, there is a trade-

off between cross-term suppression and the preservation of

auto-term resolution. The quadratic class of time–frequency

distributions provides different options to suppress cross-terms

whilst preserving the auto-terms for multicomponent signals.

The class can be written as a function of the Wigner–Ville

distribution as

ρz(t, f) = Wz(t, f) ∗
t
∗
t
γ(t, f) (6)

where γ(t, f) is known as the time–frequency kernel of the

distribution ρz(t, f). One study shows that lag-independent

kernels, with γ(t, f) = G(t), can give optimal suppression of

cross-terms for stationary FM signals [27]. Because our test

signal x(t) here is nonstationary, we include a lag window

[23]; now we have the separable kernel γ(t, f) = G(t)M(f)
which has been shown to be an effective kernel for suppressing

kernels for slowly-varying harmonic signals [16], [23].

Using γ(t, f) = G(t)M(f), and assuming all cross-terms

are eliminated, we can rewrite (3) as

ρy(t, f) ≈
[

H̄(f)
K+1
∑

q=1

M(f − [qf0 + αt])

]

∗
t
Ḡ(t) (7)

where Ḡ(t) = G(t)h̄(t). The approximation in (7) is exact

only when all cross-terms are removed.

2) Task 2: Removing Spectral Modulation: By taking the

inverse Fourier transform of ρy(t, f) we get the time–lag

domain (t, τ) [11]

Ky(t, τ) = F
f→τ

−1 {ρy(t, f)}

= h̄(τ) ∗
τ

[

K+1
∑

q=1

m(τ)e j2πτ(qf0+αt)

]

∗
t
Ḡ(t) (8)

where F−1 represents the inverse Fourier transform as fre-

quency f is transformed to lag value τ . Although h̄(τ) is

a narrowband signal centred on the origin τ = 0, it is not

easy to remove h̄(τ) from Ky(t, τ) as h̄(τ) is convolved with

the auto–terms in Ky(t, τ). Note also that it is not easy to

remove this modulating term in the time–frequency domain in

(7) either, as the function H̄(f) is a wide-band signal.

We now use the concept of homomorphic filtering to decon-

volve h̄(τ) with the rest of the expression in (8). Homomorphic

analysis uses a nonlinear function to transform a multiplication

operation to an addition operation and then uses another

transformation, in this case a Fourier transform, to transform to

a domain where the two signals are separable [19]. Examples

of applications using homomorphic analysis include speech

and seismic applications [19], [20].

We apply a log transform to ρy(t, f) in (7) before taking the

inverse Fourier transform to convert the convolution operation

in (8) to an addition operation:

Ry(t, τ) = F
f→τ

−1 {log ρy(t, f)}

= F
f→τ

−1

{

log

(

K+1
∑

q=1

M [f − (qf0 + αt)] ∗
t
Ḡ(t)

)}

+ F
f→τ

−1
{

log H̄(f)
}

(9)

To simplify analysis we do not create a separate quefrency

domain [19] but keep the terminology of the lag domain τ ;

but note that Ry(t, f) is not equal to Ky(t, τ).
Simple filtering methods will separate the two terms in (9):

the first term is a broadband signal and the second term is a

narrowband signal centred around the origin. Thus we multiply

Ry(t, τ) with a high-pass function l(τ). After this filtering

operation we transform back to the time–frequency domain

and apply the inverse log transform:

ηy(t, f) = e
F

τ→f
{Ry(t,τ)l(τ)}

. (10)
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Fig. 6. Time–frequency distribution of EEG signal in Fig. 4 using the
homomorphic method to spread the spectral content.
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Fig. 7. Instantaneous frequency extracted from the time–frequency distribu-
tion in Fig. 6 using the peak-picking method in [13]. The plots shows only
the fundamental frequency.

Assuming that the term F−1{log H̄(f)} is removed

by the operation Ry(t, τ)l(τ) and that this window-

ing operation does no have a significant effect on

F{log
(

∑K+1
q=1 M [f − (qf0 + αt)] ∗

t
Ḡ(t)

)

} then

ηy(t, f) ≈
K+1
∑

q=1

M [f − (qf0 + αt)] ∗
t
Ḡ(t)

Thus, ηy(t, f) is (approximately) equal to the desired distri-

bution

ρx(t, f) =

K+1
∑

q=1

δ [f − (qf0 + αt)]

with the addition of smearing in the time and frequency from

the functions Ḡ(t) and M(f).
Fig. 6 shows the EEG spike-enhanced signal from Fig. 5 but

here the distribution is generated using this proposed homo-

morphic approach. From this time–frequency representation

we can use any of the previously proposed methods to extract

the IF. In Fig. 7 we use method in [13] to estimate the

fundamental frequency of the EEG signal.

3) Numerical Implementation: Implementing the distribu-

tion with a discrete, finite-length signal y[n] necessities some

deviation from the proceeding analysis.

First, we have the problem of using the log of a time–

frequency distribution: TFDs are not always positive valued

and often contain zero-values. To avoid singularities and

complex numbers, we threshold all values in the distribution

which are below zero to zero; and we add a small bias before

computing the log the distribution. Thus we use

log {T0(ρy[n, k]) + ǫ}

instead of log ρy[n, k]; [n, k] are the discrete-time and discrete-

frequency variables of (t, f) [28]; and T0 is threshold function:

T0(x) = 0 if x < 0 and T0(x) = x if x >= 0. Although

singularities can be avoid by using a very small value for ǫ,
any values of ρy[n, k] close to this singularity will produce

very large negative values for log ρy[n, k]. This proximity to

the singularity is problematic for time–frequency distributions

where often most of the time–frequency plane will have values

close to zero. To avoid these singularity spikes in the log
transform, we set ǫ = µ max(t,f) ρy[n, k]. In our analysis

with the EEG we used µ = 0.3.

Second, to enable analysis without constraining the duration

of the EEG epoch to short lengths, we use the algorithms in

[23] to control the level of oversampling for the discrete time–

frequency distribution. For our tests we used a distribution of

dimension Ntime × Nfreq = 8 192 × 512 for the signal of

length N = 4 000; these algorithms enable computation of

time–frequency distributions without exceeding the memory

limit for our desktop computer.

4) Summary of Method: The method to form the time–

frequency distribution is as follows:

Step 1 high-pass filter with a cut-off of 3 Hz to filter;

Step 2 apply the Teager–Kaiser operator in (1) to obtain

y(t);
Step 3 generate a time–frequency distribution ρy(t, f) in (6)

with a separable kernel γ(t, f) = G(t)M(f);
Step 4 inverse Fourier transform, using the nonlinear log

transform, to the time–lag domain and multiply by

the high-pass function l(τ)

Ry(t, τ) = F
f→τ

−1 {log (T0[ρy(t, f)] + ǫ)} l(τ)

Step 5 transform back to the time–frequency domain:

ηy(t, f) = e
F

τ→f
{Ry(t,τ)}

.

Step 6 extract the IF (instantaneous frequency) from

ηy(t, f) by tracking the peak of time–frequency

components [12]–[14].

The parameters used for discrete time–frequency distribu-

tions were as follows. The lag-function m(τ) was a Hanning

window of (discrete) length 4fs, where fs is the sampling

frequency (100 Hz); and the Doppler-function g(ν) was a

Hamming window of (discrete) length fs1.75/N , where N
is the length of the discrete signal y[n]. The high-pass filter

l(τ) was a Tukey window, shifted from the origin by the length

of the positive lag axis, with a parameter value of 0.25.
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III. DISCUSSION

The time–frequency distribution presented here suppresses

the spectral modulation on a time-varying basis: that is, the

filtering, or liftering operation [19], is achieved in the time-

varying lag (time–lag) domain. We could apply the same

liftering procedure to the entire y(t) signal before the time–

frequency analysis. There are some limitations with this

approach however. First, generating a complex cepstrum is

problematic for a noisy signal with an arbitrary phase spectrum

[19], [20]. And second, although we can achieve a flat mag-

nitude spectrum, the method does not preserve the features of

the signal in the time-domain. The time–frequency method we

use here is a more robust approach because the time–frequency

domain is real-valued and therefore we do not use the complex

cepstrum [19], [20]; and also we need not preserve the time-

domain features, as we use only the (time-varying) spectrum

in the time–frequency distribution.

Alternative methods to our time–frequency approach may

also be applicable to estimate the IF of the PLED waveform.

For example, methods to estimate instantaneous heart-rate

from electrocardiogram signals [29] or methods to estimate the

fundamental frequency of speech signals [30] may be adapted

to PLED waveforms.

As this is only a preliminary analysis there is still much

work to do. We next need to quantify the performance of our

proposed method at estimating the IF of the PLED waveforms,

possibly using simulated EEG signals with known IF laws.

Then we will test the efficacy of the estimated IF as a feature

to discriminate between ictal and non-ictal PLEDs.
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