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Abstract—Signal processing methods can improve the qual-
ity and intelligibility of oesophageal speech. Current methods
show only moderate improvement leaving potential for better
results. Quantifying parameters of oesophageal speech relative
to laryngeal (normal) speech would help in the design of future
enhancement methods for oesophageal speech. We quantified
parameters of a source–filter model on a database of sustained
vowels in Spanish from 4 oesophageal and 4 normal speakers. A
ten-parameter glottal waveform model was used as the source and
an autoregressive model was used as the filter. Classification, us-
ing a log-spectral distance measure, showed that all oesophageal
speech samples were classified as whisper voice types; a voice
type with a signal to noise ratio of -20 dB. Filter parameters
representing spectral amplitudes and bandwidths had a large
degree of variation for oesophageal speech comparative to the
degree of variation for normal speech (Brown–Forsythe test,
F < 0.001). Source metrics, noise to harmonic ratio (NHR)
and variation in fundamental frequency, were also significantly
greater for oesophageal speech (t-test, P < 0.001). These results
show a greater degree of nonstationarity, and a noisier glottal
waveform, for oesophageal speech comparative to normal speech.

I. INTRODUCTION

Oesophageal speech is a method of speech used by those
without a larynx. The airway from the trachea is surgically
closed from the vocal tract during a laryngectomy and oe-
sophageal speakers must expel air up through the oesophagus
to the vocal tract. Without vocal folds the typical periodic
glottal waveform that defines voiced speech is absent, and the
oesophageal speaker must learn to produce a similar waveform
by vibrating the upper part of the oesophagus to mimic the
vibrating glottis. Oesophageal speech has been described as
rough, harsh, course, awkward, with low pitch, volume, and
intelligibility comparative to normal (laryngeal) speech [1]–
[3].

There are some reports in the literature quantifying the
differences between normal and oesophageal speech. Early
speech enhancement methods by Qi et al. [4], [5] showed
that, comparative to normal speech, different parameters were
needed to fit a source–filter to model to oesophageal speech.
Others later found similar results using the same source–
filter model approach [6], [7]. Some studies have used com-
mon speech measures, such as fundamental frequency, jitter,
and shimmer to quantify a difference between normal and
oesophageal speech [8]–[10]; and more recently, nonlinear
measures have been used as discriminating features between
the two speech types [1], [3]. Our goal is to build on this
body of knowledge by quantifying the parameters of a source–

filter speech model. Specifically, we want to know how best
to model the oesophageal glottal waveform and the degree of
nonstationarity in the filter parameters.

For the analysis in this paper, we used a database of
sustained vowels, /a/, /e/, /i/, /o/, and /u/ in Spanish, recorded
from 4 oesophageal speakers and 4 normal speakers. To
quantify the parameters of the method, we used a LPC
(linear predictive coding) approach as a source–filter model.
Specifically, the method used an autoregressive (AR) model of
the vocal tract (filter) and a synthetic waveform to model the
glottal waveform (source). The glottal waveform model was
predefined into 8 different classes of voice types: modal, vocal
fry, breathy, whisper, falsetto, and harsh [11]. Each glottal
waveform class was fitted to the source speech signal and a
log-spectral distance measure was used to assess a classifica-
tion error. Other quantification analysis included assessing the
variability of the fundamental frequency and noise to harmonic
ratio (NHR) of the source; and assessing the variability of the
line spectral pairs (LSPs) to quantify the spectral variation of
the filter model.

Results showed significant differences for both source and
filter parameters between normal and oesophageal speech.
The LSP coefficients had a greater degree of nonstationarity:
these coefficients varied more from one frame to the next
for oesophageal speech comparative to the variation of the
coefficients for normal speech (F < 0.001). Source parameters
were also significantly different between the two speech types:
fundamental frequency varied more for oesophageal speech
comparative to the variation for normal speech and NHR
was significantly larger; for both tests, P < 0.001. Whisper
voice type gave the best spectral fit for all of the (source)
oesophageal speech samples in our database; normal speech, in
comparison, was represented by modal (50%), whisper (24%),
and breathy (19%) voice types. Whisper voice type had the
lowest signal to noise ratio (-20 dB) of all the voice types. Thus
our results show a higher degree of nonstationarity, from LSP
coefficients and fundamental frequency tests, and a noisier
source signal, from NHR and voice type classification, for
oesophageal speech comparative to that for normal speech.
This analysis gives a clear picture of the differences between
normal and oesophageal speech using the source–filter model
approach and can be used to develop new oesophageal speech
enhancement methods.
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II. METHODS

LPC (linear predictive coding) is a source–filter method
to represent speech with a small number of parameters thus
enabling voice coding. The speech signal is divided into short
overlapping frames, approximately 30 ms, and a linear time-
invariant filter is fitted to each frame [12]. The role of this
filter is to estimate the transfer function of the vocal tract and
therefore estimate the format frequencies.

LPC methods use an auto-regressive (AR) model as the
filter; thus

s(n) =
P∑
l=1

als(n− l) + e(n) (1)

where s(n) is the discrete speech signal within an analysis
frame, al are the AR coefficients, P is the order of the
model, and e(n) is the residual signal. Thus e(n) approximates
the glottal waveform but this approximation is not exact
because the relation between the glottal waveform and the
vocal tract is not accurately modelled by a simple linear time-
invariant system [12]. For many applications however this
approximation is sufficient [12].

A. Filter Parameters

For our analysis we used an AR model of order 16, that
is P = 16, with a 30 ms frame. Each frame was windowed
with a Hamming function and the frame overlap was 50%.
All speech samples were down-sampled to 8kHz, after the
appropriate anti-aliasing filtering.

To quantify the differences in format frequencies we con-
verted the AR coefficients to line spectral pairs (LSP) co-
efficients [13]. LSP coefficients are simply related to the
frequency peaks of the signal [13].

We used only the 4 most significant LSPs, as we expect
these to represent the most dominant spectral peaks. To
determine the most significant LSPs, we first calculated the
distance (difference) between the pairs and then selected the
first 4 pairs with the smallest distance. We use this procedure
because the distance between LSPs is inversely proportional
to the amplitude of the spectral component [13]. An example
of LSPs for oesophageal and normal speech are in Fig. 1.

Using the LSPs we did the following two tests:
1) For each frame, the AR model estimated 4 sets of

LSPs of the current speech sample; we then subtracted
the mean from each set, so we are left only with the
distribution of the variance of the LSP coefficients. Next,
we averaged these 8 coefficients (each pair contains two
coefficients) into one set to obtain a distribution of the
variance and then averaged these sets overs the four
speakers. For each vowel, we computed the distribution
for both the oesophageal and laryngeal voices and then
statistical compared the variances of the two distribu-
tions.

2) We repeated this process but this time with the difference
between the LSP coefficients.

The first test quantifies the variation, about a mean value,
of the spectral components; the second test quantifies the
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Fig. 1. Example of LSPs (line spectral pairs) for normal and oesophageal
speech of /a/ vowel. Only 4 LSPs with the smallest distance between the pair
are shown here. Note the larger degree of variability for the oesophageal LSPs
compared to the variability for the normal LSPs.

variation, about a mean value, of the amplitude of these
spectral components.

B. Source Parameters

An important parameter of the glottal waveform is the
fundamental frequency of the signal. The term fundamental is
used because the signal is a harmonic signal for voiced speech.
We compared the variation of fundamental frequency, about
a mean value, between the normal and oesophageal speech
samples. The procedure was as follows:

1) estimate the pitch using a threshold-based correlation
method [5] from the residual signal e(n);

2) subtract the mean and combine over the 4 speakers for
each voice type;

3) and then statistical compare the variance of each voice
type.

Another measure we quantified is the NHR (noise to har-
monic ratio) [14]. This measure was originally proposed to
quantify the level of hoarseness in speech. For our study, we
used this measure to quantify the amount of noise in the glottal
waveform. Thus, we measured the NHR on the residual signal
e(n) using the NHR method in [14]. We then statistically
compared the difference in the NHR distributions between
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voice type tc tp te ta jitter SNR
(%) (%) (%) (%) (%) (dB)

modal 58 41 55 4 2 40
vocal fry 48 59 2.7 72 10 20

breathy 46 66 2.7 77 5 20
whisper 50 80 8 100 2 -20
falsetto 50 80 8 100 2 50

harsh 25 30 1 50 10 10

TABLE I
PARAMETERS FOR GLOTTAL WAVEFORM MODEL FOR EACH SPEECH TYPE.
THE TABLES OMITS 4 PARAMETERS RELATING TO HOW THE ASPIRATION

NOISE IS ADDED TO THE SIGNAL; THESE EXTRA PARAMETERS AND MORE
DETAILS OF THE MODEL ARE IN REFERENCE [11].

normal and oesophageal speech.
To further characterise the difference between oesophageal

and normal speech, we fitted the residual signal to 8 pre-
defined glottal waveform models. These pre-defined models
represent 8 different voice types: modal, vocal fry, breathy,
whisper, falsetto, and harsh [11]. Each voice type model has
ten parameters to define the synthetic glottal waveform. This
model consists of the 4-parameter glottal waveform model
from reference [15] combined with jitter and a 5-parameter
aspiration noise model [11]. The values of the parameters
are in Table I and more details are in reference [11]. This
glottal waveform uses the fundamental frequency as an input
parameter [11], [15].

For each speech sample, at each frame, we constructed all
8 voice types using the estimated fundamental frequency at
each frame. We then calculated the magnitude spectrum of the
residual signal and averaged this spectrum for each speech type
over all frames. This allows an estimate of the power spectral
density (PSD) as we know that the residual signal is a noisy
signal for the oesophageal speech samples. This PSD estimate
is written as

E(k) =

F∑
f=1

|Ef (k)|2

where Ef (k) is the discrete Fourier transform of e(n) at frame
f for F frames in the speech sample. Similarly, for each
speech sample we estimate the PSD for the 8 voice types;
that is,

Vl(k) =
F∑

f=1

∣∣∣V f
l (k)

∣∣∣2
where V f

l is the discrete Fourier transform of the glottal
waveform model at frame f for each voice type l = 1, 2, . . . , 8
and Vl(k) is PSD estimate. Nonstationary information in the
signal will be lost by this PSD averaging procedure; what we
fit therefore is the time-averaged spectral content of the speech
and synthetic glottal waveform signal.

To assess which voice-type is the best fit, we used a distance
error measure: the log-spectral distance [16]. The distance
measure, for voice type l, is defined as

dl =

N/2∑
k=k1

|lnE(k)− lnVl(k)|2 (2)

where N is the length of the E(k) and Vl(k). To ignore the
influence of any low frequency artefacts that could be easily
removed without perceived loss of quality to the speech signal,
k1 was to set f1N/Fs where f1 = 25 Hz and Fs is the
sampling frequency. Before calculating the distance measure
dl, we removed the trend from the spectral magnitudes Ef (k)

and V f
l (k). In our source–filter model, the trend of the

speech spectrum is completely described by the filter. Thus we
removed this trend to isolate the source model. We estimated
the spectral trend by fitting an AR model of order 2 to the
signal and then subtracted this AR signal; this resulted in flat
PSD estimates.

The final pre-processing step before calculating dl was
to normalised both PSD estimates by replacing E(k) with
E(k)/(

∑N−1
k=0 |E(k)|2)1/2, and likewise for Vl(k), to ensure

that both PSD estimates in (2) have the same energy value.

III. RESULTS

A. Line Spectral Pair Coefficients and Fundamental Fre-
quency

To quantify the difference in variance between the zero-
mean LSP coefficients for normal and oesophageal speech, we
used a heteroscedastic test to determine the statistical differ-
ence of variances. A Kolmogrovo–Smirnoff test showed that
neither distribution, for normal and oesophageal speech, were
normally distributed. For each vowel, the Brown–Forsythe test
computed an F -score of less than 1 × 10−10, indicating that
the two variances are heterogeneous.

Similarly, the distributions for the difference between the
LSPs were not normally distributed and were heteroscedastic,
as the Brown–Forsythe test computed an F -score of less than
1×10−10 for each vowel. For these two LSP tests, the variance
calculated for the oesophageal speech samples were larger
comparative to the normal speech.

Fig. 2 shows the distributions of the LSPs and the difference
between the LSPs for the /a/ vowel.

The next test showed that the variance of the fundamental
frequency for oesophageal speech was (statistically) signifi-
cantly larger compared to the variance of the fundamental fre-
quency for normal speech. The F -score of the Brown–Forsythe
test was less than 1 × 10−10 which indicates the variance
between the normal and oesophageal speech distributions were
statistically different. (We used the Brown–Forsythe test again
as neither distributions were normally distributed.)

NHR for oesophageal speech was also significantly larger
comparative to the NHR of the normal speech. Both distribu-
tions passed the Kolmogrovo–Smirnoff test and were therefore
assumed to be normally distributed. Student t-test showed
significant difference, with P < 1 × 10−16, between the two
distributions. The distributions are shown in Fig. 3a

B. Classification of Glottal Waveform

The best class to represent oesophageal speech glottal wave-
form, out of the 8 classes in Table I, was the whisper voice
type. For all the oesophageal speech samples, this whisper
voice type had the lowest spectral distance measure. For
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(a) zero-mean LSPs.
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(b) difference between zero-mean LSPs.

Fig. 2. Distribution of LSPs (line spectral pairs) for normal (NORM) and oesophageal (OESOP) speech for /a/ vowel.
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Fig. 3. Box-plot showing distributions for normal (NORM) and oesophageal (OESOP) speech.
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Fig. 4. Classification of voice types based on lowest spectral distance measure. Voice types are modal (MOD), vocal fry (VF), breathy (BRE), whisper
(WHIS), falsetto (FALS), and harsh (HAR).
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Fig. 5. Box-plot of distribution of spectral distance measures for different
voice types for normal speech samples. Voice types are modal (MOD), vocal
fry (VF), breathy (BRE), whisper (WHIS), falsetto (FALS), and harsh (HAR).

normal speech, the classification results were more diverse.
The most common voice type, with almost 50%, was modal;
next, with 24%, was the whisper voice type; and third, with
19%, was the breathy voice type. These results are plotted in
bar charts in Fig. 4.

The distributions of the distance measures for each class
(voice type) are plotted in Fig. 5. The distributions in both
plots, for normal and oesophageal speech, are not homoscedas-
tic and therefore we can not apply an ANOVA test here.
The picture, however, is consistent with classification results
in Fig. 4: the whisper voice-type provides the best fit for
oesophageal speech and the best fit for normal speech is
distributed among the modal, breathy, and whisper voice-types.

IV. DISCUSSION

For our database of sustained vowels the results showed
that the parameters for modelling the vocal track were sig-
nificantly different (F < 0.001) between the two speakers;
both the change in LSPs coefficients and difference between
LSP varied, over the analysis frames, more significantly for
oesophageal speech compared with the variation over time
for the normal (laryngeal) speech. We conclude that the filter

component of a source–filter model for oesophageal speech
has a larger degree of nonstationarity compared with the
degree of nonstationarity for normal speech. A larger degree
of variation implies a greater degree of time-varying change
in frequency, or amplitude, or both frequency and amplitude,
of the main formats. It remains to be seen, however, if this
time-varying behaviour is caused by changes in the physical
vocal tract after laryngectomy, or caused solely by the highly-
variable glottal waveform input to this filter, or a combination
of the both.

The results also showed that the variance of the fundamental
frequency was larger for oesophageal speech compared to the
variance of this frequency for normal speech. As the measure
of variance of fundamental frequency is closely relate to jitter,
these results are consistent with other studies comparing jitter
in oesophageal and normal speech [1], [3], [10].

Similarly, the results showed larger values of NHR for
oesophageal speech compared to values of NHR for laryngeal
speech, where the NHR was calculated using the residual
signal of the LPC approach. This finding is consistent with
measures of NHR on the speech, not the residual, signal [1].
The implication of larger NHR for oesophageal speech is that
either 1) the oesophageal voice is not capable of producing a
glottal waveform with the same degree of harmonic structure
as that for laryngeal speech or 2) that additional noise is added
to the glottal waveform after a periodic signal is formed.

Supporting the proposition that the glottal waveform for
oesophageal speech has little harmonic, periodic structure is
the classification results: all oesophageal speech samples were
classified as whisper voice types. The whisper voice type has
the lowest SNR, at -20 dB, comparative to the other voice
types, which are all above 20 dB.

Yet the variability in fundamental frequency could distort
the classification results when averaged over many frames
to produce the PSD estimate; thus, a similar result maybe
be found for the residual signal with low NHR but with a
large frame-to-frame fundamental frequency variation. Fig. 6
illustrates this effect of variable fundamental frequency on the
PSD estimate. Because we found the oesophageal signal to
have, comparative to normal speech, a large NHR measure
we conclude that the residual signal for voiced oesophageal
speech is a noisy signal with little periodic, and therefore
harmonic, structure. This is consistent with our observations
of oesophageal voiced signals in the time–frequency domain,
as we found it hard to visually identify the usual harmonic
patterns typically seen in normal (laryngeal) voiced speech.

A word of caution however: we need to careful in what
we can conclude from fitting the residual LPC signal to voice
types. First, the parameters of the model were fixed to give
8 classes of voice types; a better procedure would be to fit
the parameters to each residual signal to produce a better fit.
Second, we would expect modal speech to fit all normal speech
samples but this was not a clear result and therefore we need
to be careful in our interpretation of the voice types fitted to
oesophageal speech. Third, the choice of distance measure can
influence the classification results; a perceptual-based distance
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Fig. 6. Example of PSD of synthetic glottal waveform, computed by
averaging the magnitude spectrum over 30 frames. The PSD estimate is
dependent on the fundamental frequency, which for normal speech is stable
but for oesophageal speech is highly variable.

measure could give a measure closer to how we perceive the
speech.

V. CONCLUSIONS

From our database of sustained Spanish vowels, we found
statistical significance between all tested source and filter
parameters for oesophageal speech comparative to the param-
eters for normal (laryngeal) speech. The glottal waveform for
oesophageal speech is best described by a whisper voice type.
These results should help inform future oesophageal speech
enchantments methods that use the source–filter approach. Fu-
ture work includes repeating the tests on a larger database with
more speakers and to include unvoiced phonemes; assessing
whether the nonstationarity of the filter component, a model
of the vocal tract, is caused by, and if so to what degree, the
nonstationary source; and developing an oesophageal model of
speech to help construct and test speech enhancement methods.
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