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a  b  s  t  r  a  c  t

Automated  methods  of  neonatal  EEG  seizure  detection  attempt  to highlight  the evolving,  stereotypical,
pseudo-periodic,  nature  of EEG  seizure  while  rejecting  the  nonstationary,  modulated,  coloured  stochastic
background  in the  presence  of  various  EEG  artefacts.  An  important  aspect  of  neonatal  seizure  detection
is, therefore,  the  accurate  representation  and  detection  of  pseudo-periodicity  in the neonatal  EEG.  This
paper describes  a  method  of detecting  pseudo-periodic  components  associated  with  neonatal  EEG seizure
based on  a  novel  signal  representation;  the  nonstationary  frequency  marginal  (NFM).  The  NFM  can  be
considered  as  an  alternative  time-frequency  distribution  (TFD)  frequency  marginal.  This  method  inte-
grates  the  TFD  along  data-dependent,  time-frequency  paths  that  are  automatically  extracted  from  the
TFD using  an  edge  linking  procedure  and has  the  advantage  of reducing  the  dimension  of  a  TFD.  The
reduction  in  dimension  simplifies  the  process  of  estimating  a decision  statistic  designed  for  the  detection
of the  pseudo-periodicity  associated  with  neonatal  EEG  seizure.  The  use  of  the  NFM  resulted  in a signif-
eizure detection
ime-frequency signal processing

icant  detection  improvement  compared  to existing  stationary  and  nonstationary  methods.  The  decision
statistic  estimated  using  the  NFM  was  then  combined  with  a  measurement  of  EEG amplitude  and  nomi-
nal  pre-  and  post-processing  stages  to form  a seizure  detection  algorithm.  This  algorithm  was  tested  on
a  neonatal  EEG  database  of 18  neonates,  826  h  in length  with  1389  seizures,  and  achieved  comparable
performance  to  existing  second  generation  algorithms  (a median  receiver  operating  characteristic  area

 acro
of  0.902;  IQR  0.835–0.943

. Introduction

The accurate representation of periodicity is an important
equirement in biological signal processing applications. The aim
f such methods is to provide a compact representation in the
requency domain that is more conducive to simpler processing
nd effective decision making. The need to quantify this repetition
as resulted in the widespread use of the magnitude squared of a
ourier transform referred to in this paper as the Fourier spectrum
FS) [1].  The advantage of the FS is that a periodic signal is compactly
epresented by a peak located at the frequency of repetition.
The ability of the FS to compactly represent periodicity has been
xploited for the detection of seizure in neonatal EEG [2,3]. Neona-
al seizure detection has become an important problem in neonatal

� The Matlab code for the NFM is available at http://www.ucc.ie/en/
eonatalbrain/.
∗ Corresponding author. Tel.: +353 21 420 5940.
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oi:10.1016/j.medengphy.2011.08.001
ss  18  neonates).
© 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

neurology as recent research has shown that seizures damage the
developing brain [4–6]. This means that the detection of seizures
is useful for diagnosis, leading to treatment, and estimation of the
seizure burden (the accumulated duration of seizure) is useful for
prognosis [7].

Neonatal EEG seizure, however, is a nonstationary signal which
contains stereotypical waveforms that repeat with non-constant
period (pseudo-periodicity) [8].  This nonstationarity reduces the
ability of Fourier-based methods to compactly represent such sig-
nals as they tend to spread the power of these signals over the
range of the frequency variation in the signal. This means that it is
difficult to associate pseudo-periodicity with an observed peak in
the frequency domain. The inability of the FS to represent pseudo-
periodicity is apparent in automated methods of detecting the
repetitive aspect of neonatal EEG seizure [2,9,10]. The aim of such
automated analyses is to distinguish periods of seizure, defined as a

clear ictal event characterised by the appearance of sudden, repetitive,
evolving, stereotyped waveforms that have a definite beginning, mid-
dle and end, and last for a minimum of 10 s, from neonatal EEG back-
ground or nonseizure which is defined as a disorganised signal with

d.

dx.doi.org/10.1016/j.medengphy.2011.08.001
http://www.sciencedirect.com/science/journal/13504533
http://www.elsevier.com/locate/medengphy
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seizure on and off and time-varying gain, kb(t), is used to simulate
longer term modulations of the background such as seen in active
and quiet sleep [13].
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ixed frequency content [11]. These definitions have resulted in
he neonatal EEG seizure signal being modelled as a nonstationary

ulticomponent signal and neonatal EEG background being mod-
lled as a coloured stochastic process [12,13]. An important
rerequisite of neonatal EEG seizure detection is, therefore, the
ccurate representation and detection of repetitive behaviour in the
eonatal EEG; a behaviour which has been related to the presence
f nonstationary signal components. Once repetition has been iden-
ified then the EEG signal must be analysed for amplitude evolution
nd stereotypical behaviour to accurately determine the presence
f seizure. This additional analysis must be undertaken as EEG
rtifacts, generated by electrical mains interference, ECG, respira-
ion, ocular movements and handling of the neonate, may  exhibit
eriodicity [14]. Accurate methods for detecting nonstationary sig-
al components in neonatal EEG constitutes further refinement to
utomated neonatal seizure detection methods.

There are many methods that can be applied to the task of
etecting nonstationary signal components such as the Radon
ransform [15], the marginal of a unitary transformed time-
requency distribution (TFD) [16], time-frequency (TF) template

atching [17] and data-driven searching of a TFD [18]. These meth-
ds, essentially, integrate a TFD along a series of TF paths to form
he detector output. The Radon transform uses a series of linear
aths with different offsets. The marginal of a unitary transformed
FD overcomes the limitation of linearity by permitting nonlinear
unctions, but only a single nonlinear function can be selected.
his limitation is overcome by using a TF template matching
rocedure in which several templates that highly correlate with
he TF representation of seizure can be selected. The weakness
f the TF template matching procedure is that a restriction on
he number of templates must be enforced to minimise both the
omputational burden and the false alarm rate. This results in a
eduction in detector performance as not all seizure patterns are
ccounted for by the template set. The need for a priori information
o form an optimal, reduced template set is overcome by using
ata-driven TF paths estimated from the TFD [18]. The detector
utput is then generated by correlating frequency shifted versions
f this TF path with the signal. The limitation of this method is
hat only a single optimal TF path is generated which results in
educed detection performance when signals with multiple signal
omponents, such as neonatal EEG seizure, are considered. This
aper aims to enhance the technique of [18] to include multiple
ignal components and apply this method to the estimation of a
ecision statistic designed for the detection of pseudo-periodic
omponents associated with neonatal EEG seizure.

This paper first outlines the application of a nonstationary model
f the neonatal EEG signal to the problem of seizure detection. The
elationship between detecting nonstationary signal components
nd neonatal EEG seizure is defined and a simple decision statis-
ic is proposed based on the model. The basis of a nonstationary
ignal component detector, the nonstationary frequency marginal
NFM), is then introduced as an alternative method of construct-
ng a data-dependent frequency marginal of a TFD that accounts
or the nonstationary characteristics of a signal. Relevant informa-
ion on TFDs including the marginal satisfaction condition of TFDs
hat links a TFD to the FS (the basis of an optimal detector for sta-
ionary signal components) is presented. The ability of the NFM to
mprove the detection of pseudo-periodic signal components was
ested and the results were compared with a FS based detector
nd other nonstationary methods, such as TF template matching
nd TF Rényi entropy [17,19]. The decision statistic was then com-
ined with a measurement of EEG amplitude (an approximation

o the amplitude-integrated EEG [20]) in a trained linear discrimi-
ant classifier (LDC), with pre- and post-processing stages, to form

 seizure detection algorithm (SDA). The performance of the SDA
as analysed using a leave-one-subject-out cross-validation [21].
ng & Physics 34 (2012) 437– 446

2. Method

2.1. Neonatal EEG acquisition

The data used throughout this paper were acquired at the Cork
University Maternity Hospital, Ireland. The EEG recordings were
acquired with a multiple channel video-EEG (NicoletOne, CareFu-
sion, San Diego, USA). The recording electrodes of the EEG were
positioned according to the international 10–20 system, modi-
fied for neonates [14]. The initial data set contained 826 h of data,
recorded from 18 neonates. All data were sampled at 256 Hz after
analogue filtering with a pass band of [0.5, 70] Hz to prevent base-
line drift and aliasing. Two experienced neurophysiologists used
an 8-channel bipolar montage to, independently, determine the
presence of seizures in the recording. There were 1389 seizures
identified in this database with a mean duration of 194 s and a
median duration of 93 s; of these 898 were greater than 64 s in
duration (median 166 s) and 491 were less than or equal to 64 s in
duration (median 38 s). The seizure burden (median 162 min, IQR
101–239 min), mean seizure duration (median 249 s, IQR 96–356 s),
recording length (median 50.6 h, IQR 29.7–59.8 h) and the arte-
fact burden (median 4.9 h, IQR 3.8–5.4 h) were recorded for each
neonate. The ratio of seizure to nonseizure duration (median 5.9%,
IQR 4.2–12.1%) was also recorded. The EEG data were down-
sampled to 8 Hz to decrease the computational burden of the NFM.
The down-sampling procedure used digital anti-aliasing filters.

A sub-sample of the database of neonatal EEG was  used to
develop the NFM-based feature. This database was constructed by
randomly selecting one hundred 64 s epochs from seizure events
lasting more than 64 s, one hundred 64 s epochs from seizure
events lasting less than 64 s, and two hundred 64 s epochs from the
remaining artefact-free background EEG (only low frequency EEG
seizures (<4 Hz) were included in the sub-sampled data set). All
physiological recordings were performed according to the ethics of
the University College Cork and the Cork University Maternity Hos-
pital. Example epochs of EEG seizure and background are shown in
Fig. 1.

2.2. A nonstationary model for neonatal EEG seizure detection

A simple model of neonatal EEG can be defined as,

EEG(t) = ks(t)seizure(t) + kb(t)background(t). (1)

where seizure(t) and, background(t), are assumed to have equal
signal energy. The time-varying gain, k (t), is used to effectively turn
0 10 20 30 40 50 60
−100se

time (s)

Fig. 1. Example 64 s epochs of neonatal EEG seizure and background.
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The seizure signal has been modelled in [12]. The analytic asso-
iate of this signal model [22, p. 86] is defined as,

eizure(t) =
R∑

i=1

ai(t) exp

(
j2�

∫ t

0

fi(�) d� + �i

)
, (2)

here ai(t) exp
(

j2�
∫ t

0
fi(�) d� + �i

)
is the ith nonstationary sig-

al component and R is the number of components. The use of
he product of two functions in the definition means that there
an be a large number of choices of ai(t) and fi(t) that result in
eizure(t). A practically useful definition of ai(t) and fi(t) can be
btained by ensuring the frequency content of the AM is sig-
ificantly less than the IF [23,24]. This restriction permits the

nterpretation of these functions as the amplitude modulation (AM)
nd the frequency modulation (FM) (or instantaneous frequency
IF)), respectively. The IF of each signal component characterises
he pseudo-periodicity in the signal [17]. The application of this

odel to neonatal EEG seizure results in the additional constraints
f a harmonic relationship between components (fi = if1) and a min-
mum component duration of 10 s [11].

The background function has been modelled as [25],

ackground(t) = IFT

{
X(f )

f (2H+1)

}
, (3)

here IFT is the inverse Fourier transform, X(f) is the spectrum of
 single realisation of white noise and H is the Hurst exponent of a
ractional Brownian process which is limited between 0 and 1 [25].
his process is further filtered by a bandpass filter simulating data
cquisition.

A power based decision statistic can be proposed by incorpo-
ating the fact that neonatal EEG is segmented into epochs and
ssuming that a decision is made per epoch. The power ratio deci-
ion statistic is defined as,

(u) =

∣∣∣∫ u+T/2
u−T/2

ks(t)seizure(t) dt
∣∣∣2∣∣∣∫ u+T/2

u−T/2
kb(t)background(t) dt

∣∣∣2 , (4)

here the integration of the uth epoch is performed for duration T. If
his value is greater than some threshold then seizure is present and
f less than or equal to some threshold then background is present.
n approximation to the decision statistic on the complex version
f the EEG is defined as,

(u) ≈

∫ u+T/2
u−T/2

R∑
i=1

|ks(t)ai(t)|2 dt

∫ u+T/2
u−T/2

|kb(t)|2 dt
, (5)

here ks(t)ai(t) and kb(t) are real. This approximation utilises
chwartz’s inequality [26, p. 449]. If the frequency of the seizure
s constant, � is closely related to the spectral power ratio used in
he neonatal seizure detection algorithm outlined by Gotman et al.
2].  In order to estimate �(u), significant, harmonically related, non-
tationary signal components must, therefore, be detected in the
eonatal EEG.

A method of nonstationary signal component detection can
e developed by extending the method of optimal detection for
tationary signal components to deal with nonstationary signal
omponents. For stationary signal components, an optimal detector
an be constructed from a peak detector applied to the FS. The per-

ormance of this detector is reduced when detecting nonstationary
ignal components due to the smearing of energy in the frequency
omain. A peak detector applied to a signal representation simi-

ar to the FS that does not smear energy in the frequency domain
ng & Physics 34 (2012) 437– 446 439

in the presence of nonstationary signal components (Fig. 2(c) and
(d)) would result in near optimal detection. The NFM is a novel
representation that can super resolve the nonstationary signal com-
ponents seen in neonatal EEG seizure.

2.3. Nonstationary frequency marginal

The NFM was  designed to represent nonstationary signal com-
ponents on a frequency domain. The formulation of the NFM
requires a signal representation that is capable of accurately repre-
senting the time-varying frequency content of nonstationary signal
components. TFDs were chosen as they represent signal energy on a
joint-time frequency domain. The quadratic class of TFDs is defined
as [22],

�� (t, f ) = Wz(t, f ) ∗∗
(t,f )

�(t, f ), (6)

where ∗ is the convolution operation, and �(t, f) is the filter that
characterises different TFDs, such as the spectrogram, separable
kernel, or Choi–Williams distribution [22], within the quadratic
class. Wz(t, f) is the Wigner–Ville distribution (WVD) which is
defined as [22, p. 30],

Wz(t, f ) =
∫ ∞

−∞
z
(

t + �

2

)
z�
(

t − �

2

)
e−j2�f� d�, (7)

where z(t) is the analytic associate of the real signal under analysis,
that is, z(t) = s(t) + jH{s(t)} where H is the Hilbert transform, z�(t)
denotes the complex conjugate of z(t), f is frequency, t is time and
� is time lag.

An important property of the WVD  is the satisfaction of the
marginal conditions [22, p. 60], that is,

|z(t)|2 =
∫ ∞

−∞
Wz(t, f ) df and (8)

|Z(f )|2 =
∫ ∞

−∞
Wz(t, f ) dt, (9)

where |Z(f) | 2 is related to the FS (|S(f) | 2) of the real signal, s(t), via
[22, p. 13],

|Z(f )|2 =

⎧⎨
⎩

4|S(f )|2, f > 0
|S(f )|2, f = 0
0, f < 0

.  (10)

The WVD, in the presence of multicomponent signals, is affected
by interference generated by the quadratic nature of the transfor-
mation. As the interference tends to be highly oscillatory a simple
method of reducing it, is to filter or smooth the WVD  with a 2D
lowpass filter [22]. The smoothness of a TFD can be improved by
increasing the effective bandwidth duration (BT) product of the
smoothing filter [23].

The NFM identifies signal components in a TFD of the signal
under analysis and then integrates the TFD along the TF paths of
the identified components. The resultant energy of integration is
then located at the mean TF path frequency to generate an alternate
signal representation. The process of generating a signal represen-
tation by integrating along data-dependent TF paths, as opposed
to generating a normal frequency marginal (9) results in improved
detection of nonstationary signal components. The formulation of

the NFM as a data-dependent integration of a TFD and the alternate
signal representation it generates are shown in Fig. 2.

The NFM identifies TF paths using the multiple component IF
estimation technique outlined in [27]. This method converts a TFD
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Fig. 2. Data-dependent integration of a TFD. The signal under analysis is shown in (a), the TFD of the signal and the TF paths used to integrate the TFD for the NFM and FS
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re  shown in (b), the FS of the signal is shown in (c) and the NFM is shown in (d). T
the  TF representation was  a WVD  smoothed with a separable kernel – 2D Hanning
o  signal components with mean frequencies of [43, 72, 176] Hz and powers of [0.4

o a binary image, in which one denotes the presence of local max-
ma  and zero the absence of any maxima, that is,

(n, m)  =
{

1 if
∂�� (n, m)

∂m
≥ 0 and

∂�� (n, m + 1)
∂m

< 0

0 otherwise
, (11)

here b(n, m)  is the binary image, �� (n, m) is the discrete TFD of dis-
rete signal s(n), n and m are discrete time and discrete frequency
espectively. The partial derivatives are found using a forward dif-
erence approximation [28, p. 106]. The work reported in [27]
gnores the low energy regions of the TFD, but the NFM considers
he entire region of the TFD.

This binary image is then searched for maxima that are located
ithin a pre-defined search area using an edge linking algorithm

29]. Maxima that are located within the search area are linked
ogether to form a single TF path. Example search areas are shown
n Fig. 3(a) for marginal satisfaction (a search that generates the FS)
nd Fig. 3(b) an alternate representation of nonstationary signal
omponents (a search that generates the NFM). The extent of the
earch area is typically related to the amount of smoothing in the
FD and the only restriction is that the current row along the fre-
uency axis is not included. This restriction is based on the fact that

wo maxima cannot occur on consecutive discrete frequency sam-
les, due to (11), and the assumption that maxima occurring further
way are associated with separate TF paths. This also ensures a one-
o-one relationship between time and frequency which conserves
aded region in (b) denotes the concentration of signal energy in the joint TF plane
ow) and the energy between (c) and (d) is conserved. The peaks in (d) correspond
, 0.5], respectively.

the continuity of the TF path with respect to time. The edge linking
procedure also permits a lower limit on the length of components
to be identified.

The edge linking algorithm extracts R paths with lengths, L = [L1,
L2, L3, . . .,  LR], that are defined by time vector p = [p1, p2, p3, . . .,  pR],
and frequency vector q = [q1, q2, q3, . . .,  qR], where the discrete IF of
the ith TF path is one-to-one and defined as qi(pi). The TFD is then
integrated along these TF paths and the result is assigned to the
mean frequency of the ith TF path (m̄i) to provide information on
the frequency content of the nonstationary signal component. The
mean frequency domain, mp (a dummy  frequency variable), is sam-
pled identically to the frequency domain of the normal frequency
marginal (mp ≡ m).  The residual TFD energy, not represented by a
TF path, is then added to the energy associated with the TF paths to
conserve overall signal energy. This NFM is, therefore, defined with
respect to discrete path mean frequency, mp, as

NFM(mp) =
(

R∑
i=1

msi(mp)

)
+ residual(mp), (12)

where
msi(mp) = ı(mp − m̄i)

Li∑
k=1

�� (pi(k), qi(k)) , (13)
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(mp − m̄i) is the delta function defined as,

(mp − m̄i) =
{

1 mp = m̄i

0 otherwise
, (14)

¯ i is the mean frequency of the path defined as [22],

¯ i =

Li∑
k=1

qi(k)�� (pi(k), qi(k))

Li∑
k=1

�� (pi(k), qi(k))

, (15)

esidual(m) =
N−1∑
n=0

�r(n, m),  (16)

here

r(n, m) =
{

�� (n, m) for n /∈ p, m /∈ q
0 for n ∈ p, m ∈ q

(17)

nd N is the discrete signal length.
The parameters that define the performance of the NFM are:

(t, f) which characterises the TFD, the size and shape of the search
egion and the minimum path length. Example parameters for a
FM formed using the WVD  (�(t, f) = ı(t, f)) are the search region

hown in Fig. 3(b) and a minimum path length of 3 samples.
A smoother TFD will generate fewer, longer duration paths

hich will result in a more discontinuous NFM as more energy will
e integrated over fewer paths. The shape of the smoothing win-
ow, the design of the search region and the minimum path length
an be used to emphasise a particular signal class in the NFM. If
or example, long duration signal components with slowly varying
F laws, such as neonatal EEG seizure, are to be represented, then
he NFM should be implemented using a TFD with a low band-
idth/long duration smoothing window and search region and, a

ong minimum path duration [30]. The ratio of bandwidth to dura-
ion can easily be controlled using a separable kernel [22].

The use of smoothed WVDs permits some modification to the
mplementation of the NFM. The TF paths used to form the NFM are

idened to the −3 dB bandwidth (BW3) of the smoothing window
o take into account the spreading of energy in the TFD due to the
moothing process. The search area is also widened by BW3. Finally,
he minimum path length is extended to 2BW3.
. Results

The NFM was applied to the task of detecting pseudo-periodic
omponents associated with neonatal EEG seizure. The neonatal
locations, circles denote valid search directions, the number in each circle denotes

EEG was pre-whitened (via a differentiator), as recommended in
[9,13].  An estimate of the test statistic in (5) was used as a basis
for the detector. The practical, automated implementation of (5)
resulted in a definition of � per epoch of neonatal EEG as

� ≈

�M/mh	∑
n=1

S(mhn)

(
M−1∑
m=0

S(m)

)
−

�M/mh	∑
n=1

S(mhn)

, m = [0,  . . . M − 1], (18)

where mh = argmax(S(m)), m is discrete path frequency or fre-
quency, M is the discrete length of S(m), and S(m) the representation
under trial (e.g. the FS or NFM). Due to possible bias in the estima-
tion of the path mean frequency, a 10% error margin is searched to
find the peak harmonic of any harmonics.

The estimate of the background power, represented in the
denominator, is equivalent to that in (5) if the background and
seizure waveforms are assumed to be orthogonal (or near orthogo-
nal) to each other. Orthogonality ensures that the combined power
in the seizure and background components is the equivalent of the
power in the combined EEG signal. This is a reasonable assumption
if the pre-whitened background is a white noise process [26].

The NFM was estimated from a TFD smoothed with a separa-
ble kernel; a two-dimensional Hanning window (−3 dB duration of
2.125 s, −3 dB bandwidth of 0.133 Hz). The shape of the 2D Hanning
window improves the detection of slowly varying pseudo-periodic
components seen in neonatal EEG seizure [30]. The minimum com-
ponent length was  set to 10 s as defined in [11].

The discriminatory ability of �, estimated with both the NFM
and FS, was  tested against a small database of artefact-free EEG
over a range of epoch lengths. The performance of � was quanti-
fied using a receiver operator characteristic (ROC). The ROC was
constructed by plotting the sensitivity against the specificity as the
threshold was  varied from the minimum to maximum value of �.
The sensitivity was  defined as the number of seizure epochs cor-
rectly identified and the specificity was  defined as the number of
background epochs correctly identified, in percentages. The area
under the ROC (AUC) and the point at which the ROC crosses the line
of equal sensitivity and specificity were reported. This feature was
then tested on a large database of neonatal EEG, collected as part of
normal monitoring of the neonate (inclusive of artefact). Its perfor-
mance was compared to a measurement of aEEG amplitude which
has shown to provide important information for the detection of

seizure [3].  Finally, the NFM based estimate of � was  combined with
aEEG amplitude using a trained LDC, with pre-processing and post-
processing stages, to form a simple SDA. This SDA was tested on the
full database of neonatal EEG and assessed with the AUC, seizure
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Table  1
Detecting short and long duration events with pseudo-periodicity (seizure) in
neonatal EEG over a range of analysis window durations. The results are presented as
mean above (standard deviation). The percentage value is the point at which sensi-
tivity equals specificity on the ROC. Values in bold are associated with the maximum
AUC.

Epoch length (s) 8 16 32 64

Seizure events >64 s
� (FS) 0.882 0.938 0.835 0.690

(0.024) (0.015) (0.029) (0.036)
83.1% 85.4% 78.8% 62.8%
(2.9) (2.6) (2.9) (3.5)

�  (NFM0.3) 0.841 0.953 0.977* 0.965
(0.028) (0.015) (0.009) (0.013)
76.9% 90.3% 92.9%* 92.3%
(3.1) (2.1) (2.0) (2.1)

Seizure events ≤64 s
� (FS) 0.695 0.734 0.631 0.568

(0.035) (0.035) (0.040) (0.040)
64.2% 67.3% 63.6% 55.9%
(3.3) (3.5) (3.4) (3.6)

� (NFM0.3) 0.790 0.863 0.909 0.915*

(0.033) (0.025) (0.024) (0.020)
73.4% 78.3% 84.7% 85.3%
(3.4) (3.1) (2.2) (2.7)
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Table 2
Comparing different methods of detecting pseudo-periodicity (seizure) in neonatal
EEG over a range of analysis window durations. The results are presented as mean
(standard deviation). The percentage value in brackets is the point at which sensi-
tivity equals specificity on the ROC. Values in bold are associated with the maximum
AUC.

Epoch length (s) 8 16 32 64

� (FS) 0.818 0.855 0.772 0.674
(0.021) (0.017) (0.021) (0.023)
73.9% 77.4% 72.2% 64.0%
(2.2) (2.0) (1.9) (2.4)

� (NFM0.3) 0.798 0.903 0.935 0.944*

(0.022) (0.014) (0.015) (0.011)
73.1% 84.1% 86.8% 88.4%*

(2.2) (1.9) (1.9) (1.9)

TF-templates 0.923 0.913 0.818 0.649
(0.013) (0.014) (0.022) (0.031)
85.7% 83.5% 74.9% 58.1%
(0.12) (0.19) (0.15) (0.24)

TF Rényi entropy 0.627 0.629 0.714 0.822
(0.026) (0.030) (0.028) (0.022)
60.9% 60.7% 66.4% 73.9%
(2.3) (2.5) (2.5) (2.3)

method was calculated using a bootstrap with 200 resamplings.
* Statistically significant improvement compared to the best performing FS.
t-test, level of significance 0.05).

etection rate and false alarms per hour metrics [31]. Two  clinically
elevant measures of a SDA are the ability of the SDA to discriminate
eizure from nonseizure neonates when applied to long duration
EG recordings and the ability of the SDA to accurately estimate the
eizure burden of the neonate. The lack of nonseizure neonates in
he test database eliminates the opportunity to estimate the first

easure but the accuracy of an estimate of seizure burden at an
ptimal decision threshold was included.

.1. Comparison to stationary and nonstationary methods

The FS and the NFM of an 64 s epoch of neonatal EEG seizure and
ackground are shown in Fig. 4. The NFM of neonatal EEG seizure
hows power concentrated around 3 TF paths while the distribu-
ion of neonatal EEG background power lacks clear structure and
s spread over the entire mean frequency domain. The FS is a less
ompact representation. The difference between the maxima in the
S and NFM with respect to seizure and background suggests a
eak detector applied to the NFM would result in greater separa-
ion between the pseudo-periodic behaviour of seizure and random
ehaviour of background.

The test statistic, �, was then estimated using the FS and NFM
n order to compare stationary and nonstationary representations.
he FS and NFM were additionally estimated using analysis epochs
f increasing length to investigate the effect of including more
ata in the formation of the signal representation. In the case
here the analysis epoch was less than 64 s, the original 64 s

poch was divided into overlapping (50% overlap) sub-epochs and
he sub-epoch with the maximum feature value was chosen to
epresent the 64 s epoch. As the minimum duration of a seizure
vent has been defined as 10 s there may  be instances where the
eizure duration is significantly less than the duration of the anal-
sis epoch [11]. In order to assess the effect of short duration
vents, the detector was applied to two subsets of neonatal EEG
eizure; the first contains neonatal EEG seizures exceeding 64 s

nd the second contains neonatal EEG seizures less than 64 s. The
esults are given in Table 1 where the mean and standard devia-
ion of each performance metric was estimated using a bootstrap
ith 200 resamplings [32]. Any improvement in the NFM over
* Statistically significant improvement compared to other methods (t-test, level
of significance 0.05).

the FS was tested with Student’s t-test and deemed significant if
p < 0.05.

The test statistic estimated from the FS outperformed the NFM
when the analysis epoch was  short and the seizures were of long
duration, but the FS-based estimate suffered a significant reduc-
tion in performance when the duration of the analysis epoch was
increased.

The NFM based estimate of � for the detection of seizure was  also
compared, across various analysis epoch lengths, to other methods
based on the detection of pseudo-periodicity: the output of a TFD
template matching procedure and the TF Rényi entropy [17,19]. The
TFD template matching procedure correlates a limited set of TFD
templates with the TFD of the neonatal EEG epoch. The detector
output of the TF template matching procedure is,

� = max(n,m)

⎛
⎝∑

(r,s)

�� (n, m)�l(n − r, m − s)

⎞
⎠ , l = [0,  . . . , L − 1],

(19)

where �� (n, m) is the TFD of the neonatal EEG epoch, �l(n, m)
is the lth TF template and L is the number of templates. This
is equivalent to a 1D implementation of a matched filter when
the TFD satisfies Moyal’s equality [33]. This method was devel-
oped for seizure detection in the neonate and details can be
found in [17]. TF Rényi entropy is commonly used as a measure
of signal information content and complexity on the TF domain
[19]. A signal that is compactly represented by a TFD, such as
neonatal EEG seizure, will have a lower TF Rényi entropy than
a signal that is spread in the TF domain such as neonatal EEG
background.

The nonstationary methods were implemented on the com-
bined seizure and background neonatal EEG databases (two
hundred 64 s epochs of seizure and two  hundred 64 s epochs of
neonatal EEG background). The results are outlined in Table 2 and
the mean and standard deviation of the ROC estimate of each
It can be seen that the NFM-based � estimate resulted in the best
performance for the detection of the pseudo-periodic component
of neonatal EEG seizure and was at a maximum when the epoch
length was 64 s.
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A SDA was  developed by combining three features in a LDC and
adding pre- and post-processing stages [21]. The features used were

Table 3
The discriminatory performance of � and aEEG amplitude for neonatal seizure detec-
tion.  The results are presented as median (IQR) across 18 neonates.
ig. 4. Representing 64 s epochs of real neonatal EEG (seizure and background), (a)
eonatal EEG background and seizure, respectively. The energy between (b) and (c)

.2. Performance of � on the full database

The ability of stationary and nonstationary estimates of the
ecision statistic, �, to discriminate between seizure and non-
eizure was then tested on a full database of neonatal EEG.
he use of the full database of neonatal EEG exposes each
eature to the large array artefacts seen in largely unsuper-
ised long duration recordings of the EEG. Estimates of �,
sing the NFM and FS, are compared to the aEEG amplitude

hich has been shown to be a highly discriminatory nonpara-
etric feature for seizure detection [34]. The performance of

ach feature for detecting seizure from nonseizure is shown in
able 3.
) are the smoothed WVD, (b) and (e) are the FS, and (c) and (f) are the NFM, of real
(e) and (f), is conserved.

3.3. Neonatal seizure detection
AUC

aEEG amplitude 0.774 (0.697–0.870)
�  with NFM 0.849 (0.760–0.870)
�  with FS 0.513 (0.451–0.583)
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Fig. 5. Performance of the proposed SDA compared to other methods.

Table 4
The differences in SDA performance between low and high performing neonates with respect to and seizure burden, mean seizure duration, recording length and artefact
burden.

Low AUC median (IQR) High AUC median (IQR) p-Value

Seizure burden (min) 152 (93–252) 183 (89–275) 0.80
Mean seizure duration (s) 303 (96–377) 147 (94–313) 0.44
Seizure number 41 (20–88) 60 (37–163) 0.35
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Recording length (h) 48 (28–60) 

Artefact  burden (%) 13 (7–19) 

, the aEEG and an additional measurement of amplitude, designed
o capture information on the long term evolution of the amplitude.
his feature is similar in concept to the estimate of background
EG used in [2] and was defined as the lower quartile of the aEEG
eature estimated over an hour. The LDC was chosen as the features
ere developed to be singularly discriminatory so a simple linear
ivision of the feature space should be possible.

The pre-processing stage involved downsampling, segmenta-
ion (a 64 s epoch with an overlap of 48 s) and a simple artefact
etection system. The artefact detection system eliminated any EEG
poch with an aEEG amplitude greater than 70 �V and a bad elec-
rode annotation (these are automated annotations applied by the
EG machine). The post-processing stage involved taking the maxi-
um  classifier output across the 8 EEG channels and smoothing this

utput with rectangular window 5 epochs in length. A seizure was
etected if this smoothed output exceeded a set threshold. A collar
f 5 epochs in length was then applied to the detection output.

A leave-one-subject-out cross-validation procedure was used to
ssess the performance of the SDA [21]. This is an iterative method
or estimating the SDA performance on unseen testing data. At each
teration, a training set was formed by leaving out a single subject
rom the full database. A randomly selected subset of the training
et (approximately 10 min  of seizure and 100 min  of nonseizure
er patient) was used to train the LDC which was then tested on
he left-out subject. The features were normalised with a Box–Cox
ransformation [35]. This process was repeated until all subjects
ad been tested or unseen.

The ROC and the false alarms per hour versus seizure detection
ate of the SDA for the median neonate are shown in Fig. 5. The
edian AUC for the SDA was 0.902 (IQR 0.835–0.943). The reported

erformance of other SDAs is also shown in Fig. 5[2,3,36,40–44].
The ability of the SDA to provide an accurate measure of the
eizure burden was assessed using the absolute error at a single
ptimal decision threshold. The minimum error in an estimate of
eizure burden had a median of 1.92 min/h (IQR 0.45–3.66 min/h)
cross 18 neonates. The false alarm rate and duration of false alarms
52 (28–61) 1.00
10 (9–13) 0.67

at this optimal threshold had a median of 0.11/h (IQR 0.03–0.45/h)
and a median of 221 s (IQR, 169–244 s), respectively.

The difference in the highest performing neonates and lowest
performing neonates (9 low AUC vs 9 high AUC) with respect to
seizure burden, mean seizure duration, recording length and arte-
fact burden were tested using a Mann–Whitney U test and the
results are summarised in Table 4. Artefact burden was defined
as the duration of epochs marked as a bad electrode by the EEG
machine or exceeding an aEEG amplitude of 70 �V (equivalent to
an average EEG amplitude of 120 �V across the 64 s epoch); there-
fore it does not contain an estimate of low amplitude artefacts such
as those caused by heart rate, respiration, movements, electrical
mains interference and electrode pop.

4. Discussion

Accurate detection and measurement of nonstationary signal
components results in an improved feature estimate that is impor-
tant for the detection of seizure in neonatal EEG. The proposed
method offers significant improvement over stationary methods
and other nonstationary methods for the detection of pseudo-
periodicity seen in neonatal EEG seizure. The combination of this
feature with measurements of EEG amplitude, pre- and post-
processing stages results in a SDA with a performance that is
comparable to second generation algorithms.

It is important when forming a spectral estimate that as much
data as possible are used to form the estimate; in other words,
a long analysis window is required. An increase in the analysis
window increases the resolution of the spectral representation of
pseudo-periodicity. This is why  detection based on the FS is more
accurate when using an epoch of 16 s rather than 8 s (Table 2).

The assumption in choosing long analysis windows is that sig-
nal characteristics do not change within the analysis window, in
other words the signal is stationary. In the case of nonstationary
signals, such as the neonatal EEG, this assumption is violated and
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tationary methods for representing periodicity in a signal suffer
 reduction in compactness. This is why detection based on the
S is less accurate as the analysis window length increases above
6 s. In order to overcome nonstationarity in a signal, stationary
rocessing methods must use analysis windows short enough to
ssume stationarity which results in a reduction in the resolution
f a spectral representation and a subsequent reduction in the sep-
rability between pseudo-periodic signal components and noise.
his led to the development of features based on the information
alculated from different estimates of the time-varying autocor-
elation function which is fundamental in the definition of TFDs
36,37]. The parametric nature of these features and the heuris-
ic selection of the various thresholds used in their construction
uggest that these features are suboptimal, even though the per-
ormance of these features for seizure detection is relatively high. It
lso means their incorporation into an advanced machine learning
aradigm is difficult.

The NFM overcomes the constraints of stationary methods
y using methods which were designed for nonstationary sig-
als such as TFDs. The NFM compresses a 2D TFD, constructed
sing a long analysis window, into a 1D signal representation of
seudo-periodicity. This permits the NFM to form a nonparametric
epresentation of pseudo-periodic signal components even if the
uration of the pseudo-periodicity is less than the duration of the
nalysis window. The cost of such an improvement is a more dis-
ontinuous representation that is computationally more expensive
han the FS due to the use of TFDs (although the NFM can still be
mplemented in real time as 400, 64 s epochs of neonatal EEG, sam-
led at 8 Hz, are processed on average in 1.1 s, running on a Intel
ore2 Duo E8400 3 GHz in a MATLAB environment). The NFM is also
ot invertible, like the FS but unlike the Fourier transform, which
eans that the signal cannot be exactly reconstructed from the
FM. This limits the use of the NFM but still permits the detection
f nonstationary signal components. Nonstationary signal compo-
ents, however, can be reconstructed directly from the results of
he edge linking algorithm applied to the TFD.

There are many issues with comparing the performance of
DAs [31]. Differences in performance metrics and neonatal EEG
atabases make any comparisons difficult. Measures of perfor-
ance such as epoch based sensitivity, epoch based specificity,

vent based seizure detection rate and event based false alarm
ate are affected differently by changes in detection thresholds or
ost-processing stages and are also weighted by the ratio of seizure
o nonseizure duration. Furthermore, depending on the definition,
vent based seizure detection rate and false alarm rates do not
ave a one-to-one relationship (Fig. 5). Differences in databases can
ffect results as traditional short duration recordings have lower
rtefact burden and more equal seizure to nonseizure duration
atios. This is due to the fact that attending neurophysiologists
re, typically, called over during a period of intense seizure bur-
en and are present for the entire recording. In the case of long
uration recordings, such as used in this paper, the ratio seizure to
onseizure duration is strongly biased towards nonseizure and the
rtefact burden is relatively higher.

Nonetheless, the performance of the proposed SDA appears to
xceed the first generation algorithms of [2,9,38–40,45],  is compa-
able to the second generation algorithms of [3,36,41–43] but lags
he third generation algorithm of [44]. The main advantage of the
roposed SDA is the minimal use of information in decision making.
he proposed SDA uses 96 discrete data points to represent 64 s of
-channel EEG while the method of Temko et al. uses 3520 discrete
ata points, an order of magnitude difference.
The discriminatory performance of the test statistic � was
educed when the duration of the seizure was less than 64 s. The
erformance of � was also reduced from 0.944 to 0.902 when com-
ined into a SDA and tested on the large database. This reduction
ng & Physics 34 (2012) 437– 446 445

was due, primarily, to the presence of artefact on the large neona-
tal EEG database. The artefacts that were most responsible for
false alarms were repetitive artefacts such as those caused by
respiration and heart rate and medium amplitude artefacts such as
those caused by movement [14]. The repetitive artefacts resulted
in significantly large values for � (although heart rate artefact was
severely attenuated by the downsampling procedure) and medium
amplitude artefacts resulted in significantly large values for aEEG.
The presence of high frequency seizures in the database was  of neg-
ligible influence on the SDA performance, as most high frequency
seizures tended to degenerate into low frequency discharges.

The proposed SDA provides proof of concept of a newly derived
decision statistic, estimated using the NFM, for the detection of
seizure in neonatal EEG. It may  be improved by incorporating
additional features that represent the morphology of the seizure
waveform, improvements in artefact detection, and using a more
sophisticated classification system that is better able to segment
the feature space. Additional improvements can be made by
improving the implementation and efficiency of the NFM. While the
application of advanced machine learning techniques offers great
improvement to SDAs, there remains ample opportunity for the
development and/or improvement of discriminatory, nonparamet-
ric neonatal EEG features.

5. Conclusion

The NFM is a new method of signal representation that can be
used to detect pseudo-periodicity, such as seizure, in the neonatal
EEG. The detection method uses a decision statistic defined as the
power ratio between identified nonstationary signal components
and the residual of the NFM. The NFM uses data-driven TF path
integration to compress a TFD into a representation of nonsta-
tionary signal component power and mean frequency. The use of
the NFM significantly improved the discriminative ability of the
decision statistic by 9.4% in AUC compared to an estimate based
on the FS even when the duration of the pseudo-periodicity was
less than the duration of the analysis window. The incorporation
of this decision statistic into a SDA based on two additional
features of EEG amplitude resulted in detection performance that
is comparable to existing second generation algorithms. Future
work will introduce refinements to the method so as to improve
the detection performance.
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