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Improved Discrete Definition of Quadratic
Time-Frequency Distributions
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Abstract—Computation of a time-frequency distribution (TFD) requires
a discrete version of the continuous distribution. This discrete TFD (DTFD)
should be free from aliasing and conserve all the important mathematical
properties of the continuous distribution. Existing DTFD definitions, how-
ever, poorly approximate this ideal. One popular definition, the generalized
DTFD (GDTFD), is alias free but does not retain all the desirable prop-
erties from the continuous distribution. Another definition, the so-called
alias-free GDTFD (AF-GDTFD), retains most properties yet is not always
alias free. We propose a new DTFD definition, based on the GDTFD, that
retains all desirable properties and is always alias free.

Index Terms—Antialiasing, discrete Fourier transforms, discrete trans-
forms, time-frequency analysis, Wigner distributions.

I. INTRODUCTION

Time-frequency distributions (TFDs), which represent the joint
time-frequency domain, are useful tools for extracting detailed and
accurate information from nonstationary signals. Like most signal-pro-
cessing methods, TFDs are usually defined for a continuous signal
in the continuous domain. To compute a TFD, however, we must
first define a discrete version of the distribution. Ideally, the discrete
TFD should preserve all important properties from the continuous
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distribution and be free from aliasing. Yet, mapping a time-frequency
distribution (TFD) from the continuous to the discrete domain may
have unintended consequences—the discrete TFD may not retain all
important mathematical properties from the continuous distribution,
or it may be distorted by aliasing [1]–[11].

The quadratic class of TFDs ���� �� can be expressed in terms of two
functions, the Wigner–Ville distribution (WVD) � ��� �� and a kernel
���� ��, as

���� �� � � ��� �� �
�
�
�
���� �� (1)

where � is the convolution operation. The kernel, which is indepen-
dent of the signal, uniquely defines different members of the class. The
WVD is a quadratic transformation of the real-valued signal ����

� ��� �� �
�

��

� ��� � �� ��� � ��������	 (2)

where ���� is the analytic associate of ���� [12] and ����� is the com-
plex conjugate of ����. Using the analytic signal avoids artefacts in the
WVD between positive and negative frequency components [12].

When forming a discrete TFD (DTFD) from a discrete signal,
aliasing—a distortion of the continuous TFD in the discrete do-
main—may occur. The DTFD may have three different types of
aliasing: 1) aliasing from the wraparound artefacts caused by the
circular convolution operation of the discrete WVD (DWVD) with
the discrete kernel [13], 2) aliasing from the discrete analytic signal’s
approximation of two mutually exclusive constraints [3], [11], and 3)
aliasing from the periodic overlap in the DWVD. We ignore the first
and second types of aliasing because we can eliminate the first type
of aliasing by replacing circular convolution with linear convolution
[13] and, although we never completely eliminate the second type
of aliasing, we can minimize it by using the discrete analytic signal
proposed in [11]. This second type of aliasing is, typically, small
compared with the third type of aliasing from the periodic overlap in
the DWVD. Thus, we refer to a DTFD as alias free to mean that the
DTFD is free from periodic overlap caused by the underlying DWVD.

Different DTFD definitions exist. In this paper, we consider the two
popular definitions: the generalized discrete TFD (GDTFD) [5] and the
alias-free GDTFD (AF-GDTFD) [6], [9]. The GDTFD is alias free but
fails to satisfy all useful mathematical properties [6]. The AF-GDTFD
satisfies all properties except the time- and frequency-support proper-
ties but is not always alias free [9], [10].

To address the limitations of the GDTFD and AF-GDTFD, we pro-
pose a new DTFD definition. This definition is an extension of the
GDTFD because the GDTFD is a time-decimated version of the pro-
posed definition. The proposed definition satisfies all properties and is
always alias free.

II. BACKGROUND

In (1), we presented the quadratic TFD class as a WVD convolved
with a kernel, a form that frequently appears in the literature [14].
Thus, we present the discrete quadratic class as a discrete WVD con-
volved with a discrete kernel. We start this section by reviewing dif-
ferent DWVD definitions.

A. DWVD Definitions

The DWVD uses a discrete analytic signal. This discrete signal is the
analytic associate of the real-valued discrete signal ��
� �. We assume
that ��
� � is a Nyquist sampled length-� signal, where � is the sam-
pling period. To simplify notation, we let � � �. The discrete analytic
signal ��
� is of the form [11]

��
� � 	� for � � 
 � 
� � � (3)


 � � � 	� for � � � � 
� � � (4)
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Fig. 1. Discrete time-lag grids (a) � ��� ��� and (b) � �������. Dots represent the time-lag location of the sample points.

where ������� is the discrete Fourier transform (DFT) of ����. The
approximation in (4) is necessary—a signal cannot simultaneously
have a finite-time and finite-frequency bandwidth [15]. But because of
this approximation, the DWVD of ���� is not completely alias free
[11]. As we mentioned in the Introduction, we do not consider aliasing
in the DWVD introduced by the approximation in (4) and therefore
call the DWVD of ���� alias free. We refer the interested reader
to a new method in [11], which improves on the standard method’s
approximation in (4).

Let us now examine three DWVD definitions that differ mainly
in how each definition forms the discrete version of the continuous
time-lag function ���	 
� � ��� � 
������� � 
��� in (2). The first
DWVD definition was proposed by Claasen and Mecklenbräuker [1]
as

�� ��	 � �

���

���

����	 ������������

for �	 � � �	 		 
 
 
 	 � � 	, where ����	 ��� � ��� � ������ �
��. This discrete time-lag function �� has a uniform discrete grid, as
Fig. 1(a) shows. We call this DWVD definition DWVD-A.

The second DWVD definition ������	 ����� was proposed by
Peyrin and Prost [3] as

�� ��	 ��

����

���

����	 �����������

�� ��� 	 �����������	
����

���

����� 	 ���	�

� �������� (5)

for � � �	 		 
 
 
 	 � � 	 and � � �	 		 
 
 
 	 �� � 	, where

����	 ��� � �������������

�� ��� 	 ��� 	� � ������ 	��������


This time-lag function ������	�� exists only at the time-lag sample
points ��	 2�� and �� � 1�2	 2� � 1� [2]; hence the two separate
expressions in (5). Fig. 1(b) illustrates this nonuniform time-lag grid.
We call the DWVD in (5) the DWVD-B definition.

We proposed an alternative definition to the DWVD-B [8]. The
DWVD, which we refer to as DWVD-C, is the DFT of time-lag
function �
, where �
 is equal to �� folded about � � � in the
lag direction. Hence, DWVD-C equals a frequency-decimated version
of DWVD-B; that is, �
����	 ����� � ������	������. Also,
DWVD-A is a decimated (in time and frequency) version of DWVD-B,
as ����	 ����� � �������	������ [3].

The continuous and discrete distributions are closely related:
DWVD-B approximates samples of the WVD [3]

�� � 	 � �� � 	 � (6)

for�	 � � �	 		 
 
 
 	 ���	. This expression is not exact because of the
approximation in (4). As DWVD-A and DWVD-C are also decimated
versions of DWVD-B, they too approximate samples of the WVD.

B. DTFD Definitions

We now discuss two commonly used DTFD definitions based on the
previously defined DWVDs. The first, known as the generalized DTFD
(GDTFD), is based on the DWVD-A [5]

�� ��	 � � �� ��	 ���
�
��
�
�� ��	 � (7)

for �	 � � �	 		 
 
 
 	 � � 	, where the symbol �� represents the
circular convolution operation. The discrete time-frequency kernel
�� is formed in the Doppler-lag domain ��	 
� by sampling ���	 
�
with the discrete grid (� � ��� , 
 � ��) to form ������	 ���.
Mapping ������	 ��� to time-frequency results in the discrete kernel
����	 �����.

The GDTFD has the same periodicity as the DWVD-A [5]; that is

�� ��	 � � �� ��� ��	 �� � ��� �

where �	 � are integers. Hence, the signal information is contained
within the quarter-plane time-frequency region � � � � � and
� � � � 	��. We therefore call the GDTFD a quarter-plane
distribution.

The second definition is known as the alias-free generalized DTFD
[6] and is, despite its name, not always alias free [9], [10]. We present
the AF-GDTFD as

��� ��	 � � � � 	 � (8)

for �	 � � �	 		 
 
 
 	 �� �	, where � is defined in terms of DWVD-B
as

� � 	 � � �� � 	 ���
�
��
�
��� � 	 � (9)

for�	 � � �	 		 
 
 
 	 ���	. The discrete time-frequency kernel ��� is
formed in the time-lag domain by sampling the time-lag kernel ���	 
�
with the nonuniform discrete grid (� � �, 
 � ��) and (� � ��	��,

 � ���	) to form�������	��. This time-lag kernel has the same
nonuniform sample grid as that in Fig. 1(b).

This 4� � 4� DWVD-B in (9) is aliased [3], and therefore the
AF-GDTFD may also be aliased. Thus, as we shall see in Section III-C,
aliasing for the AF-GDTFD depends on the structure of the kernel.
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The AF-GDTFD, unlike the GDTFD, is periodic over the full time-
frequency extent of the signal, as

��� ��� � � ��� ��� ���� �� � ���� �

where �� � are integers. Thus, the AF-GDTFD requires the full time-
frequency region � � � � �� and �	 � � �
� to represent the signal
information. Therefore, we refer to the AF-GDTFD as a full-plane
distribution.

The AF-GDTFD is related to the WVD and continuous kernel as
follows:

� � � � �

�

���

�

���

���������� ���� 
��� � �� ����� �

���
�

��
�

� � � �

where the AF-GDTFD is related to � in (8). This relation is not exact
because, as we showed in (6), the DWVD-B only approximates samples
of the WVD. Thus, the AF-GDTFD does not approximate samples of
the WVD convolved with a kernel but rather approximates samples of
the sum of time- and frequency-shifted copies of the WVD convolved
with a kernel.

Another notable DTFD definition, proposed by Nuttall [4], uses an
interpolated zero-padded real-valued signal. The interpolation rate is
determined by the time-frequency bandwidth of the kernel to avoid
wrap around effects from circular convolution in the DTFD. Because
we can express Nuttall’s definition as the GDTFD of the interpolated
signal, we do not consider it as a separate definition here.

III. PROPOSED DTFD DEFINITION

We construct the proposed DTFD definition as follows [16], [17].
1) Form the DWVD-C ��(�
2,�
2� ) for �� � � �� �� � � � � �� �

�.
2) Form the time-frequency kernel:

a) sample the Doppler-lag kernel ���� �� with the discrete grid
(� � 

� , � � �) for 
 � �� �� � � � � � � � and � �
�� �� � � � � �� � �;

b) periodically extend this kernel ���

���� in the Doppler 

direction from � to 2� ;

c) map ���

���� to the time-frequency domain to obtain the
discrete kernel ����
�� �
���.

3) Convolve the 2� � 2� DWVD with the 2� � 2� kernel

�� � � � � �� � � ���
�

��
�

�� � � �
�������������

�

(10)

The DWVD-C and kernel in (10) extend over the negative and
positive frequency range. But by limiting the frequency axis to
� � �� �� � � � � � � �, we take only the positive frequencies. We do
this because the proposed definition is a quarter-plane distribution, as

�� � � � � �������� ���� ���� � �� � ��� � (11)

for �� � integers.
To rewrite (10) as an alias-free DWVD convolved with a kernel, we

express ����
�� �
��� � in terms of � and ��1/2 as follows:

�� ��� �

� �� ��� ���
�

��
�

�� ��� � � �� ��� �

�� ��� � �

� �� ��� � ���
�

	��
�

�� ��� �� �� ��� � � (12)

Thus, the proposed definition is alias free. The symbol 	�� represents a
modified circular convolution operation that differs from the convolu-
tion operation �� as follows. The modified convolution operation on an
arbitrary � -point function ����, periodic in � , replaces the standard
periodic form of ���� � ������ with the form ���� � �������.

Because, as discussed in Section II-A, the DWVD-C approximates
samples of the WVD, the proposed definition approximates samples of
the WVD convolved with a continuous kernel

�� ��� ��� ��� �

��
�

��
�


� ��� � � � ��� ��

�� ��� � ��� ��� � �

��
�

	��
�


� ��� �� � ��� �� �

A. Properties

Here we investigate a set of mathematical properties commonly cited
in the literature [1]–[3], [6]–[9]. Each property requires a different con-
straint on the kernel. Some of these kernel constraints are mutually ex-
clusive, which means that no single DTFD is capable of satisfying all
properties simultaneously. The following lists the properties and the
sufficient kernel constraints. Outline proofs for the properties are in
the Appendix, and complete proofs are in [18].

P1) Nonnegative: The proposed DTFD is nonnegative

�� � � � � �

if ����
�� �� � ���
� � �
������
� � �
��, where the
time-lag kernel �� is the inverse DFT of the time-frequency
kernel ��. The function ���� is zero when � is not an integer.

P2) Time marginal: Summing the DTFD in the frequency direction
yields the instantaneous power

�

���

���

�� � � � � ������	

if ����
�� �� � ����.
P3) Frequency marginal: Summing the DTFD in the time direction

yields the energy spectrum

	���

���

�� � � � �
�

��
�� � ��	

if 	���
�� �
��� � ����, where the Doppler-frequency
kernel 	� is the DFT of the time-frequency kernel ��.

P4) Time support: The time support of ���� is maintained in the
time-frequency domain; that is, when ���� � � for � � ��
and � � �	, then

�� � � � � �� for � � ��� and � � ��	

over the region � � �� �� � � � � ���� and � � �� �� � � � � ���,
if ����
���� � � for ��� � ���.

P5) Frequency support: The frequency support of ���
���
is maintained in the time-frequency domain; that is, when
���
��� � � for � � �� and � � �	, then

�� � � � � �� for � � �� and � � �	

over the region � � �� �� � � � � ���� and � � �� �� � � � � ���,
if 	��

�� �
��� � � for ��� � �
�.

Authorized licensed use limited to: University of Queensland. Downloaded on January 21, 2010 at 02:57 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 2, FEBRUARY 2010 909

TABLE I
PROPERTIES FOR THE DIFFERENT DTFD DEFINITIONS

assuming that the kernel satisfies the appropriate constraint.

P6) Instantaneous frequency: The periodic first moment [1], [19, p.
463] of the DTFD, with respect to frequency, is equal to the
instantaneous frequency ���� of the signal

�

��
���

���

���

�� � � � ������� 	
� �� 
 ����

if ������� �� 
 �	���, where � is a positive constant. The
discrete instantaneous frequency ���� is equal to the central
finite difference of the phase of 
��� [19, p. 463].

P7) Group delay: The periodic first moment of the DTFD, with re-
spect to time

�
�

��
���

����

���

�� � � � ������� 	
� � ��

is equal to the group delay � �
���� of the signal if
������� 
���� 
 �	�
�, where � is a positive constant. The
discrete group delay � �
�2�� is equal to the central finite
difference of the phase of ��
����.

P8) Moyal’s formula: The equality

��

����

���

���

���

��� � � � ��� � � �


���

���

��������

�

know as Moyal’s formula, holds if

������������������� 
 ��

P9) Signal recovery: We can recover, up to a constant phase, the
time-domain signal from the DTFD

�

���

���

�� � � � ������� 
 
����
���

if ������� �� 
 	��� for all values of �.
Table I summarizes the properties for the three definitions and shows

that neither the GDTFD nor the AF-GDTFD satisfies all properties
[6], [9].

The DWVD should satisfy all properties except P1, nonnegativity.
The DWVD associated with the GDTFD, the DWVD-A, fails to sat-
isfy important DWVD properties such as Moyal’s formula or signal re-
covery. The DWVD associated with the AF-GDTFD exists only when
the signal length is odd [9]; but as 
��� is length 2� , the AF-GDTFD
does not contain a DWVD definition. The authors proposed a smoothed
DWVD for the AF-GDTFD for even-length signals that, similar to
DWVD-A, does not satisfy Moyal’s formula or the signal recovery

Fig. 2. Discrete time-lag grid for � ���2���. Dots show the time-lag loca-
tion of sample points. Sample points at ��2 noninteger values are zero; that is,
� �� � 1/2��� � �.

property. In contrast, the DWVD associated with the proposed defi-
nition, the DWVD-C, satisfies properties P2–P9 [8].

B. Relation to the GDTFD and AF-GDTFD

The GDTFD is a specific case of the proposed definition, as we can
obtain the GDTFD from the proposed definition by simply decimating
the latter in time—that is

�� � � � 
 �� ��� � � (13)

We obtain this expression by substituting ����� 
���� 

����� 
���� � ����� �
 � ������ into (12) and comparing
this result with the definition of the GDTFD in (7). The kernel
����� 
���� equals a folded (in frequency) version of ����� 
����
because the kernel ������� ��� is a decimated (in lag) version of the
kernel ���������. A consequence of the decimation process in (13)
is that the � � � GDTFD requires only half of the computational
load to compute compared with the load for the 2� � � proposed
definition [17].

The proposed definition is considerably different, however, from the
AF-GDTFD. First, the extent of the Doppler-lag kernels differ: the
AF-GDTFD’s kernel extends over the region ��� � � and �� � � �� ,
whereas the proposed definition’s kernel extends over the smaller re-
gion ��� � ��� and �� � � � . Second, the time-lag kernels have dif-
ferent discrete grids: the AF-GDTFD’s kernel has a nonuniform dis-
crete grid [9], same as the grid in Fig. 1(b), whereas the proposed
DTFD’s kernel has a uniform discrete grid, illustrated in Fig. 2. Third,
the AF-GDTFD is a full-plane distribution—periodic over the time-fre-
quency region � � � � �� and �� � � ���—whereas the proposed
DTFD is a quarter-plane distribution—periodic over the smaller region
� � � � � and � � � � ���. In addition, the 2� � 2� AF-GDTFD
requires twice the computational load to compute compared with the
load for the 2� � � proposed definition.

C. Numerical Example

We present an example to show that the AF-GDTFD is not always
alias free, whereas the proposed definition is always alias free. We do
not show the GDTFD here because it is simply a time-decimated ver-
sion of the proposed definition.

The example uses a linear frequency modulated (LFM) test signal
����� 
 �
��������� � ����������� for � 
 �� �� � � � � � � �,
where � 
 ��. We transformed ����� into the 2� -point analytic
signal 
���� using the method in [11]. Each definition uses three dif-
ferent DTFDs—a lag-independent kernel DTFD, a Doppler-indepen-
dent kernel DTFD, and a separable kernel DTFD [14]. Fig. 3 shows
the DTFD plots.

The signal energy for the AF-GDTFD, which is a full-plane dis-
tribution, should be contained within the quadrant � � � � � and
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Fig. 3. Comparison of (a) AF-GDTFD and (b) proposed DTFD definition of the analytic LFM signal � ���. Left plots are lag-independent kernel DTFDs, middle
plots are Doppler-independent kernel DTFDs, and right plots are separable-kernel DTFDs. For the AF-GDTFD, any energy outside the bottom right quadrant is
caused by aliasing.

� � � � ��� because of the analytic signal’s zero regions in (3)
and (4). As the plots show, this is not so for the lag- and Doppler-in-
dependent kernel DTFDs; thus these DTFDs are aliased. For the sep-
arable-kernel DTFD, however, the kernel suppresses the aliasing en-
ergy. Thus, depending on the kernel structure, the AF-GDTFD may
have little or even no aliasing energy. For example, we know that the
Rihaczek distribution will be alias free. The proposed definition, how-
ever, remains alias free for all kernel types.

Note that because the AF-GDTFD is a full-plane distribution, the
signal’s energy is spread over the entire full plane. If we were to narrow
the AF-GDTFD to the quarter-plane, then we would lose signal in-
formation and this quarter-plane AF-GDTFD would not satisfy many
properties, such as the time or frequency marginals.

IV. CONCLUSION

The proposed DTFD definition satisfies all desirable properties
and is (approximately) equal to samples of the continuous WVD
convolved with a time-frequency kernel. Neither the GDTFD nor the
AF-GDTFD satisfies all desirable properties, and only the GDTFD
approximates samples of the continuous WVD convolved with a
kernel. Also, the proposed definition—unlike either the GDTFD or
AF-GDTFD—contains a DWVD definition that satisfies important
DWVD properties such as Moyal’s formula and signal recovery. The
proposed definition can be computed by simple and efficient algo-
rithms. Matlab and Octave code to accompany this paper is available
to download at http://www.ieeexplore.ieee.org/.

APPENDIX

PROOFS FOR DTFD PROPERTIES

We outline proofs for the set of DTFD properties from Section III-A.
The complete proofs are in [18].

The proposed DTFD, in terms of the time-lag function �� and
kernel ��, is

�� � � � �
�

��

����

���

����

���

�� � ����� � ��� ��������

(14)

and, in terms of the Doppler-frequency function �� and kernel ��, is
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(15)

for 	� 
 � �� �� 	 	 	 � �� � �, where ������� 
���� � ���
 

������ ����
 � ������. The 2� � 2� DTFD in (14) and (15) is a
periodic extension, using (11), of the 2� �� DTFD in (10).

P1) Nonnegativity: Because 
�	�2� and ���	�2� �� are zero
when	�2 is not an integer, the kernel is nonzero for���	� 2��
only. Therefore, using (14), the DTFD is zero when 	�2 is not
an integer; that is, ���	 
 ���� 
���� � �. When 	�2 is an
integer and as ���	� ��� � 
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After some manipulation
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and the DTFD is therefore nonnegative.
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P2) Time marginal: Simply applying the property’s kernel con-
straint to (14) results in

����

���

�� ��� � � ����� �� � ������� �

P3) Frequency marginal: Applying the property’s kernel constraint
to (15) results in

��

����

���

�� � � � � �� � � � � �� � ��� �

P4) Time support: The DTFD equals the DFT of the smoothed
time-lag function 	���
����, where

	� � ��� � �� � � ����
�
�� � ��� �

To satisfy time support, 	� must have the same time support
as��; that is, if����
���� � � for � 
 ��� and � � ���,
then the property requires that 	���
���� � � for � 
 ���
and � � ���. The property’s kernel constraint ensures that
	���
���� has the same time support as ����
2���, and
thus the DTFD satisfies the property.

P5) Frequency support: The same process as for the previous prop-
erty but swapping the time-lag domain for the Doppler-fre-
quency domain.

P6) Instantaneous frequency: Applying the property’s kernel con-
straint to (14)
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Using the polar notation ���� � ���� �
��
�����
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which forms the basis for the proof [19].
P7) Group delay: Applying the property’s kernel constraint to (15)
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and, using the polar notation ���
��� � ���� �
��
�����
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�� � � � ������� � ��� � ��� ��� � ��

which forms the basis of the proof.
P8) Moyal’s formula: To prove this property, we use the identity
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where ���
���� is the smoothed discrete ambiguity func-
tion, the two-dimensional DFT of ����
2� �
2��. Expanding

���
���� in terms of time-lag functions and applying the
property’s kernel constraint, (16) is equal to
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thus proving the property.
P9) Signal recovery: The DTFD collapses to the DWVD after ap-

plying the property’s kernel constraint to (14). The proof for
the DWVD is in [8].
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