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T
 his article presents a methodical approach for 
improving quadratic time-frequency distribution 
(QTFD) methods by designing adapted time-fre-
quency (T-F)  kernels for diagnosis applications with 
illustrations on three selected medical applications 

using the electroencephalogram (EEG), heart rate variability 
(HRV), and pathological speech signals. Manual and visual 

inspection of such nonstationary multicomponent signals is 
laborious especially for long recordings, requiring skilled inter-
preters with possible subjective judgments and errors. Auto-
mated assessment is therefore preferred for objective diagnosis 
by using T-F distributions (TFDs) to extract more information. 
This requires designing advanced high-resolution TFDs for 
automating classification and interpretation. As QTFD methods 
are general and their coverage is very broad, this article concen-
trates on methodologies using only a few selected medical prob-
lems studied by the authors. 

[Boualem Boashash, Ghasem Azemi, and John M. O’Toole]
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Introduction and background

Background
Analysis, detection, and classification are required in many 
applications where signals are nonstationary and/or multi-
component [1]. High-resolution T-F analysis and instanta-
neous frequency (IF)-based techniques were shown to be 
suitable for such signals [1]–[5]. These methods are often 
quadratic and can be defined as estimates of the power spec-
tral density (PSD) in the nonstationary case [1, pp. 36–38]. 
They are referred to as TFDs and can be considered as 
smoothed versions of the Wigner–Ville distribution (WVD). 
For given analytic signals ( )z tx1  and ( )z tx2  associated with 
real signals ( )x t1  and ;( )x t2  i.e., 

	 {x ( )};  1, 2t i( ) ( )z t x t jH ix ii == + 	 (1)

with { }H  being the Hilbert transform, the cross-WVD (XWVD) 
is defined as [1, p. 64] 
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where ,( )Az o x  is the symmetric ambiguity function (SAF) of 
,( )z t  expressed as  
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For TFDs with separable kernels, ,( )g o x  can be written as 
, .( ) ( ) ( )g G g1 2o x o x=

This article formulates enhanced QTFD methods by designing 
adapted T-F kernels ( , )t fc  or equivalently their two-dimensional 
(2-D)-FT ,( )g o x  for selected medical applications. Although this 
article focuses on QTFDs, other T-F techniques presented in this 
special issue of IEEE Signal Processing Magazine, such as reas-
signment and synchrosqueezing, can also be used to enhance T-F 
representation of multicomponent signals. 

Key t-f novelties and diagnostic applications 
In the section “Designing High-Resolution Quadratic TFDs,” we 
introduce an advanced formulation of high-resolution QTFDs 
[1, Sec. 6.1], [6] for analysis of multicomponent signals and 
methods for fast computation, with illustration by selected 
medical issues [7]. Examples of such TFDs in Figure 1 show 
multicomponents, nonstationarity, and harmonics in a new-
born’s EEG and HRV signals. 

The problem of detecting a specific signal abnormality 
such as a seizure in a newborn’s EEG is considered in the 

section “Time-Frequency Detection of Abnormalities in Non-
stationary Signals.” Using specific T-F matched filters 
(TFMFs) [8], [9], experimental results on multichannel new-
born EEGs show significant improvements over time-domain 
matched filters using the area under the curve (AUC) values 
as a detection metric. In the section “T-F-Based Features for 
Classifying Multicomponent Nonstationary Signals,” features 
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[Fig1]  TFDs of an epoch of (a) a newborn’s EEG with a seizure,  
(b) a newborn’s EEG background, and (c) HRV signals.
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for classifying nonstationary signals are presented using the 
extra information in the T-F domain that identify the signal 
nonstationary characteristics [8]. T-F-based methods for 
diagnosis of other medical abnormalities using EEG, HRV, 
and pathological speech (which are all both nonstationary 
and multicomponent [1], [4], [10]–[12]) are illustrated in the 
section “Examples of T-F Applications for Automating Medi-
cal Abnormality Diagnosis.” 

Signals considered
Several kind of physiological signals are considered in this 
article (see Figures 1–3). Scalp EEG is the manifestation of 
combined brain sources and used to monitor the central ner-
vous system for diagnosis and prognosis of brain damage. 
HRV is the beat-to-beat oscillations in the heart rate signal 
[13]; it includes three frequency components; i.e., high 

frequency (HF), low frequency (LF), and very low frequency 
(VLF) [13] [Figure 1(c)]. Pathological oesophageal speech is 
an abnormal mode of speech for people without a larynx, 
requiring enhancement. 

Methods considered
Several types of T-F methods are used in this article. Detection of 
a newborn seizure using EEG signals, T-F matched filtering, and 
T-F feature recognition can be improved by using findings that 
newborn EEG seizures may be modeled as piecewise linear fre-
quency modulated (LFM) signals with harmonics [9]. Another 
method uses TFD and IF-based measures for assessing phase 
asynchrony in multichannel EEG signals [14]–[16]. An EEG 
methodology uses the IF as a feature to classify different epilepti-
form discharges in (adult) EEG, using a T-F peak-tracking 
method for IF estimation, and removing spectral modulation by 
homomorphic filtering in the T-F domain. High-resolution 
QTFDs are used to enhance pathological oesophageal speech and 
improve the quality and intelligibility of these signals. 

These theoretical developments and techniques are pre-
sented next in more detail to highlight the importance of con-
tinuing to develop, adapt, and apply new high-resolution T-F 
methods for diagnostic applications such as detecting medical 
abnormalities to help improve health outcomes. 

Designing high-resolution quadratic TFDs 

Multicomponent nonstationary  
AM–FM signal model
Unlike monocomponent signals, nonstationary multicompo-
nent signals are characterized in the T-F domain by several 
ridges corresponding to several IF laws, as observed in Figure 1.  
Such signals can therefore be modeled as a sum of mono
component signals [1]
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where K is the number of signal components and ( )z tk  repre-
sents the analytic associate of the signal kth component [see 
(1)] with the instantaneous phase (IP) ( )tkz  and instantaneous 
amplitude (IA) .( )a tk  The IF of the monocomponent signal 

( )z tk  is defined as ( ) /t 2r( )f tk kz= l  and can be estimated using 
the peak of the TFD of ( )z tk  as ,( ) { ( , )}f t t farg maxk

f
zt= k

t  
where ( , )t fzt k  is the TFD of the signal component ( )z tk  in (5) 
formulating an AM–FM model. 

Estimating the IF of multicomponent signals

Basic approach to IF estimation
Here, the TFD of the signal is calculated using a reduced 
interference TFD (RI-TFD) and is then transformed into a 
2-D binary image [1], [6], [7]. The maximum peaks in the 
TFD are found using the first and second derivatives with 
respect to frequency. The peaks that are larger than a thresh-
old are marked by one while all the other points in the 

[Fig2]  The TFD of an EEG epoch with periodic lateralized 
epileptiforms (PLEDs) with known IF law around 1 Hz. Estimated 
IF overlays the TFD. Note that the estimated IF does not follow 
the peaks of the TFD.
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[Fig3]  The TFD of the enhanced oesophageal speech signal, of 
the word ”mama.” Periodic components (LFM-type signals) are 
retained in the voiced segments to improve HNR. 
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representation are marked by zero. These peaks are potential 
IFs; they are linked by searching the next peak within a 
neighboring set [component linking (CPL)] [8]. The linked 
peaks are defined as a true com-
ponent if their time duration is 
longer than a predetermined 
threshold, which depends on the 
minimum length that a signal 
component could be. 

Component extraction 
techniques
Another approach for estimating 
the IF of a multicomponent signal is to first extract the signal 
components from its TFD using methods such as blind source 
separation (empirical mode decomposition can also be used for 
extracting signal components, but it is not used in this work 
due to its mode-mixing problem and sensitivity to noise). Once 
the signal components are extracted from the signal, their IF 
laws are estimated using monocomponent IF estimation tech-
niques [17]. As the TFD of a multicomponent signal contains 
cross-terms that complicate the components separation proce-
dure, one chooses an RI-TFD that attenuates cross-terms while 
preserving the T-F resolution [1], [7]. 

Application to the analysis of EEG  
and HRV signals
The above multicomponent IF estimation techniques are 
meaningful for EEG and HRV signals. HRV signals, for exam-
ple, the statistics of the IF laws of HRV signals, can be used to 
study the automatic nervous regulation of the cardiovascular 
function [13]. For a newborn’s EEG signals, the statistics of the 
IF laws have shown good performance in detecting newborn 
EEG abnormalities [8]. For an  illustration, Figure 4 shows the 
estimated IF laws of the newborn EEG and HRV signals shown 
in Figure 1, using the CPL method. 

All the above would require the definition and design of 
high-resolution QTFDs specifically adapted to particular non-
stationary multicomponent signals, especially when the com-
ponents are very close to each other; this is addressed next. 

Formulating high-resolution qTFDs
The WVD is considered an efficient tool for analyzing monocom-
ponent LFM signals, because of its high T-F resolution for such 
signals [1]. However, due to its bilinear nature, it introduces 
cross-terms when the signal is multicomponent and/or nonlinear 
FM. The presence of such cross-terms in QTFDs is a fundamental 
limitation that prevents more widespread use of WVD-based mul-
ticomponent T-F signal analysis in real-life applications. 

Attempts to design TFDs that reduce cross-terms while 
preserving high T-F resolution led to the introduction of RI-
TFDs, such as the Gaussian (GD), B (BD), modified-B distribu-
tions (MBDs), extended MBD (EMBD), and compact-support 
kernel TFDs [1], [6], [7]. Among these RI-TFDs, both MBD and 
EMBD have shown superior performance in analyzing real-life 

signals such as EEG and HRV signals [7], [18]. These have 
Doppler-lag kernels of the form ,( )g o x =  .( ) ( )G g1 2o x  
These separable kernel TFDs result directly from the estima-

tion of the PSD of a nonstation-
ary signal when no assumption of 
stationarity is made [1]. A meth-
odology for designing such RI-
TFDs is therefore of immediate 
importance and practical inter-
est. This article approaches this 
issue by initially focusing on sep-
arable and directional compact 
support kernels. 

Methodology for designing RI-TFDs  
with separable kernels
The aim is to find ( , ) ( ) ( )g G g1 2o x o x=  such that the TFD in 
(3) provides a good energy concentration for all components and a 
good suppression of cross-terms. We denote ( ) { ( )}g t GF t1

1
1 o= "o

-  
and ( ) { ( )} .G f gF f2 2 x= "x  As the TFD with Doppler-lag kernel 

These theoretical  
developments and techniques 
highlight the importance of 

continuing to develop, adapt, 
and apply new high-resolution 

T-F methods for diagnostic 
applications.

[Fig4]  Estimated IF laws of an epoch of (a) newborn EEG and  
(b) HRV signals shown in Figure 1(a) and (c). 
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,( )g o x  is real if ,( )g o x =  ,( )g o x- -)  [1], if we choose 
( )g t1  and ( )g2 x  real with ( )g2 x  an even function of ,x  then 

the resulting TFD will be real. The property of total energy is 

satisfied by choosing ( )g t1  and ( )g2 x  such that ( , )g 0 0 1=  [1], 
e.g., ,( ) ( )G g0 0 11 2= =  resulting in ,( , )t f t f Ed dz zt =##  
where Ez  is the energy of .( )z t

To understand how TFDs perform for multicomponent signals, 
we consider a simple case of the model in (5) where the signal 
components are time-delayed frequency-shifted versions of a low-
pass envelope ,( )a t  i.e., 

	 ( ) ( ) ,ez t a t t j
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where tk  and , , , ...,f i K1 2k =  are constants. Note that the SAF 
( , )Aa o x  is located around the origin in the Doppler-lag domain 

[1]. Then ( , )Az o xK
 can be expressed as shown in (7)
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Equation (7) shows that the first term representing the auto-
terms maps to the origin, while the second term representing 
the cross-terms in general maps away from the origin, relatively. 
For an illustration, Figure 5(a) shows a two-component signal 
in the ambiguity domain. For cases similar to Figure 5(a), (7) 
also shows that the closest cross-term to the origin is located at 

min min| ( ) | , | ( ) | ;f f t tk l k l- -^ h l k!  in the Doppler-lag 
domain. These facts suggest that for effective attenuation of cross-
terms 1) both ( )G1 o  and ( )g2 x  need to be “low-pass” and 2) 
their amplitudes need to be significantly small (ideally zero) for 

2
0
2$o o  and ,2

0
2$x x  where min| ( ) | ,f f l k k l0 !o = -  and 

min .| ( ) | ,t t l k k l0 !x = -  
Several window functions can be used to define a Doppler-lag 

kernel satisfying the above requirements. Among them are hyper-
bolic: ,( ) cosh ( )h t t2=a

a-  Gaussian: ,( )h t e ( )t 2
=a

ra-  sinc: 
,( ) ( )h t tsinc2 a=a  and Cauchy: ( ) ( )h t t2 2 2 1a a= +a

-  win-
dows. The general form of a separable-kernel TFD can then be 
given by (3) with  
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Note that the resulting TFD is real and satisfies the total energy 
property (as ) .( ) ( )G g0 0 11 2= =  

For cases where the energy concentration occurs along the 
Doppler axis in the ambiguity domain (e.g., the signal given in 
(6) with ),t 0k -  the above formulation suggests that the 
cross-terms can be attenuated using a lag-independent kernel, 
i.e., ,( , ) ( )g G1o x o=  e.g., with ( ) ( cosh ( )G t1

2o = b-#  
,) / ( cosh ( ) )t t te d dt2 2j  ro b-#  the MBD is obtained [1]. 

The above formulations suggest that lag-independent methods 
like MBD are optimal when the angle between the IF laws and 
t-axis is zero. Figure 1(c) is such an example where the T-F energy 

[Fig5]  (a) Representations of (6) with ,k 2=  ,( )a t e  /t 1002

= -  and 
s s ., , . , .t t f f32 96 0 1 0 3     Hz   Hz1 2 1 2= = = =  As shown, using 

the EMBD kernel given in (9) with .0 02a =  and ,.0 6b =  cross-
terms can be filtered out without attenuating auto-terms; (b) 
WVD of a piecewise LFM signal consisting of four components; 
and (c) SAF of the signal shown in (b). The autoterms in the AF 
are highlighted with a red rectangle.
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concentration follows three IF laws that can be described by piece-
wise linear laws [see Figure 4(b)]. A key question is therefore, how 
to extend TFDs so that they are optimal for T-F energy concentra-
tion directions away from the verti-
cal axis such as the synthetic EEG 
signal shown in Figure 5(b) where 
four components join to model a 
piecewise linear IF law. Figure 5(c) 
shows the components and the 
complicated structure of the cross-
terms in the SAF. A solution to deal 
with such signals is described in [7] 
in which a modification of BD and MBD—EMBD—is proposed to 
improve performance. The Doppler-lag kernel of this TFD is 
defined as 

	 ( , )
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This TFD uses the same window functions for both ( )g t1  
and ( )g2 x  with two control parameters for better control 
of the tradeoff between cross-terms attenuation and T-F 
resolution [7]. 

Extension to RI-TFDs with  
compact-support kernels
As mentioned earlier, in the representation of the signal ( )z tN  
in (6), the closest cross-term appears at a certain point ( , )0 0o x  
in the Doppler-lag domain. Thus, for effective removal of cross-
terms, one should choose the control parameters of the kernel 
such that 

	 ( ) ; ( ) ;G g0 0 for and  for · 1
2

0
2

2
2

0
2$ $o o o x x x= = 	 (10)

Therefore, for kernels ,( ) ( )G g1 2o x  when given signal compo-
nents are very close in t-domain and/or f-domain, to achieve 
effective attenuation of cross-terms, one should choose the con-
trol parameters of the kernel very small (i.e., close to zero). This 
in turn results in autoterms attenuation and loss of resolution. 
The control parameters need therefore to mediate the tradeoff 
between cross-term elimination and T-F resolution preserva-
tion. According to (10), one way to solve the above problem and 
obtain maximum cross-term attenuation and T-F resolution 
simultaneously is to define the TFD kernel such that it is in fact 
zero for 2

0
2$o o  and ,2

0
2$x x  resulting in compact-support 

kernels such as those in [6]. 

Extension to RI-TFDs with  
nonseparable kernels
In some conditions, the requirement of TFD optimality leads to 
a kernel that cannot be separable. Such situations occur, e.g., 
when the T-F energy concentration defines a direction in the 
T-F plane that is away from one of the axes. An example of  
such a nonseparable kernel is presented in [7]. A natural 

improvement is to use TFDs with directional compact support 
kernels to deal with such situations. This can be done by design-
ing directional filters that take into account the privileged direc-

tions in the ambiguity domain 
where the energy of the signal 
autoterms concentrate, as illus-
trated by Figure 5(c). To do this 
may require revisiting and extend-
ing methods such as the adaptive 
method in [19] or [20]. This is par-
ticularly important in newborn 
EEG seizure detection applica-

tions, as previous studies found that such signals can be modeled 
as a multicomponent piecewise LFM signal whose SAF will have 
similar characteristics to Figure 5(c). For all such scenarios, there 
is always a tradeoff between cross-terms attenuation and T-F reso-
lution. Note that the above heuristic and conceptual approach 
also relates to the tradeoff between the stationarity assumption 
(which is global) and the local ergodicity assumption, therefore 
affecting the design of ( )g t1  and ( )g2 x  [1], [21]. 

Discrete formulation of TFDs
The TFD in (3) is defined in the continuous domain for infinite-
length signals. For digital implementation, the TFD is trans-
formed from the continuous to the discrete domain and the 
infinite signals are made finite. Three problems may arise with 
discrete TFDs: aliasing, lost mathematical properties, and exces-
sive computational load or memory requirements. 

By careful implementation of the analytic signal and TFD  
[1, Sec. 6.1], [22], the aliasing can be reduced. The analytic sig-
nal is ideally zero for one-half of its time-duration and one-half 
of its spectrum [1] to avoid overlap (aliasing) in the discrete T-F 
domain. A natural approach to defining the discrete analytic sig-
nal, with a reduction in aliasing in the T-F domain of approxi-
mately 50%, for real-valued signal [ ]s n  of length N, is to 1) 
zero-pad [ ]s n  from length N to length 2N, then 2) zero nega-
tive frequencies for ,[ ]s n  and finally 3) let [ ] [ ]z n s n=  for 

n N0 1# # -  and [ ]z n 0=  for .N n N2 1# # -

To implement the discrete version of the TFD in (3) requires 
addressing the problem that the discrete signal does not have 
samples at lag values of / 2x  [see (2) and (3)]. A discrete defini-
tion of a TFD, which satisfies important mathematical proper-
ties such as the frequency-marginal property, is defined for 
signals of length N as [1], [22]

	
with [ , ] [ , ] ,eW n k K n m
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[ , ]n kt = [ , ] [ , ]W n k n kc` j
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where U  represents circular convolution, [ , ]W n k  the discrete 
WVD, and [ , ]K n m  represents a discrete version of ( , )K t x =  

.( / ) ( / )z t z t2 2*x x+ -  This time-lag function is defined on a 
nonuniform discrete grid as [ , ] [ ] [ ]K n m z n m z n m2 2 *= + -

and [ , ] [ ] [ ]K n m z n m z n m2 1 2 1 1 *+ + = + + -  and zero else-
where; i.e., [ , ]K n m2 2 1 0+ =  and .[ , ]K n m2 1 2 0+ =  This 

Three problems may arise  
with discrete TFDs: aliasing,  

lost mathematical properties, 
and excessive computational 

load or memory requirements. 



	 IEEE SIGNAL PROCESSING MAGAZINE  [114]  NOVEMBER 2013

nonuniform discrete grid includes 
all signal samples: [ , ]K n m con-
tains values of ,[ ] [ ]z c z d*  for c 
and d both even, both odd, or 
either c even and d odd, or c odd 
and d even. A consequence of 
including the product of the even-
odd index-terms in the time-lag 
function is that all sample points 
of the discrete signal are included 
and the discrete TFD then satisfies all desired important proper-
ties, such as t and f marginals, signal recovery, and Moyal’s for-
mula [1, Sec. 6.1], [22]. 

Algorithms for TFDs
TFDs require significant time and memory to compute and 
store in digital devices, such as personal computers or field pro-
grammable gate arrays (FPGAs), especially for medical physio-
logical signals, when long-duration recordings or multiple 
sensors can create large data sets. For example, a sick newborn 
with a birth-related brain injury requires neuroprotective treat-
ment promptly to limit brain injury; there is therefore a need to 
optimize TFD algorithms in terms of computation speed [1]. The 
separable-kernel TFD [see (8)] is usually oversampled when the 
length of ( )g2 x  and ,( )G1 o  P and Q, are smaller than the length 
of the signal (N). Eliminating oversampling significantly reduces 
computations and memory required to compute the TFD: compu-
tational complexity reduces from ( log )N NO 2  to ( log )PN NO  
and memory reduces from 2N 2 sample points to QP sample 
points; for example, 1 s of speech, sampled at 16 kHz, requires 

.5 4 109#  bytes of memory to store the oversampled N N2 #  dis-
crete TFD (assuming one sample point requires 8 bytes for stor-
age); with P 255=  and ,Q 511=  the separable-kernel TFD 
algorithms can compute and store the /Q P2 2#  distribution 
with only 1 106#  bytes (a difference of three orders of magnitude, 
i.e., one million less) [22]. 

Time-frequency detection of abnormalities  
in nonstationary signals

A general approach to T-F matched  
filter design 
Using the TFDs previously designed, we reconsider the classical 
detection problem where a measured signal ( )x t  of duration T  
is processed to detect the presence of a known signal represent-
ing a particular abnormality. The two possible hypothesis on 

( )x t  are as follows: 

: ( ) ( ), ,

: ( ) ( ; ) ( ), ,

x t n t

x t s t n t

H  abnormality signal absent

H abnormality signal present
0

1 H

=

= +
 

�
(12)

where ( )n t  represents additive noise and ( ; )s t H  is a known 
deterministic signal representing an abnormality dependent 
on unknown parameters .H  The optimum decision strategy 

for the detection problem in (12) 
involves finding a test statistic 
such as 

	 max ( ) ( ; )x t s t td
( )

*

T
h H=

H
' 1#

and comparing it with a pre-
defined threshold to determine 
correct hypothesis [23]. 

Assuming there is no unknown 
parameters and noise n(t) is a zero mean white Gaussian pro-
cess, based on the inner-product invariance property of the 
WVD [1, p. 62], the optimum test statistic in terms of analytic 
associates ( )z tx  and ( )z ts  is expressed as  

,( ) ( ) ( , ) ( , )z t z t t W t f W t f t fd d d
( )

*

( )
x

T
s z

T
z

2
QMF x sh == # ##  

� (13)

which is known as the quadrature matched filter (QMF). When 
the signal-to-detect ( )s t  is deterministic and known, i.e., 

,( ) ( )s t d t=  the filter with test statistic given by (13) is optimum. 

t-f kernel selection for performance 
enhancement
A limitation to the above is that in most real-life examples, the 
signal-to-detect is neither deterministic nor known com-
pletely. One such case is when s(t) is a time-delayed frequency-
shifted version of ( ),d t  i.e., ,( ) ( )s t d t t e f t2j= - rl l  where ( )d t  
is known and deterministic and tl and f l are random variables 
with joint probability density function (p.d.f.) .( , )t fc  For this 
scenario, the optimum solution is the TFMF with the follow-
ing test statistic: 

	 ( , ) ( , )W t f t f t fd d( )

( )
z

T
zTF

WV
x sh t= ## 	 (14)

with ( , )t fc l l  as the T-F kernel of the TFD [23]. The TFMF 
with the test statistic given in (14) is a generalized form of 
QMF. The choice of different kernels ( , )g o x  in (14) results 
in different test statistics; e.g., the Doppler-lag kernel 

results in( , )g e et f2 2 2j j0 0o x r o r x-

	  ,( , ) ( , )t f t t f f t fd d( )

( )
x

T
s 0 0TF

WVh t t= - -##

which has been used in [1] and [9] for newborn EEG seizure 
detection. By replacing ( , )W t fzx  in (14) with the XWVD of the 
signals x(t) and s(t), i.e., ,( , )W t fz zx s  the test statistic of the 
general formulation of TFMF based on the XWVD is derived 
which has shown better noise performance than the one based 
on (14) [23]. 

Studies show that, if signal s(t) is not known and can only be 
inferred from noisy measurements or, if s(t) is randomly per-
turbed in some way, TFMFs can outperform the filter with test 
statistic given in (13) [9]. The effect of different T-F kernels on 
the performance of TFMF based on XWVD for newborn seizure 
detection is studied quantitatively in the next section. 

Studies show that  
newborn EEG seizures can  

be modeled as piecewise LFM 
signals with harmonics, where 

the number of LFM pieces  
depends on the duration  
of the EEG seizure epoch.
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Features using the  
information in the T-F domain can 

identify signals’ nonstationary 
characteristics based either on 
signal characteristics such as  

IF or on image descriptors.

Illustration on newborn 
seizure detection
Studies show that newborn EEG 
seizures can be modeled as piece-
wise LFM signals with harmonics, 
where the number of LFM pieces 
depends on the duration of the 
EEG seizure epoch [e.g., Figure 
1(a)] [9]. Background patterns, on 
the other hand, usually exhibit irregular activities with no 
clearly consistent behavior [1]. So, newborn EEG seizure detec-
tion can be done by detecting the presence of piecewise LFM 
signals with unknown parameters (e.g., time-delay and/or fre-
quency-shift) in newborn EEG signals as per (12) [1]. 

EEG data acquisition and preprocessing
A newborn multichannel EEG database, i.e., EEG-DB, with 
C 20=  channels of continuous EEG recordings of five neo-
nates using bipolar montage according to the 10–20 standard 
is used. The signals are recorded using a Medelec Profile sys-
tem at a 256-Hz sampling rate and marked for seizures by a 
pediatric neurologist from the Royal Children’s Hospital in 
Brisbane, Australia. The EEG signals are first filtered in [0.5 
16] Hz, as newborn EEG seizures have spectral activities 
mostly below 12 Hz [8]. The filtered signals are then down-
sampled at 32 Hz to minimize computations. Finally, the sig-
nals are segmented using a rectangular window of length 8 s, 
resulting in EEG segments with N 256=  samples. 

TFMF approach for seizure detection  
in newborn EEG
The above T-F matched filtering approach is applied here to 
detect seizures in newborn multichannel EEGs. An arbitrary 
segment of multichannel EEG signal is composed of C channels 
as ( ) ( ) ( ) ( ) ;t t t teeg eeg  eeg   eegC1 2 g= ^ h  t T0 # #  where T is 
the segment length. The template set is assumed to be com-
posed of J seizurelike events and is denoted as .( ) { ( )}t r tr j j

J
1= =  

Template Set
The idea is to define templates to best represent the range of 
seizure types, as too many templates increase computations 
and probability of error, while too few increase false negatives. 
The template set contains seizurelike events, which can be 
modeled by LFM signals if EEG signals are segmented into rel-
atively short epochs (e.g., 8 s long) [9]. For example, a template 
set can be composed of J 3=  LFM signals 

	 ( ) ; ; , ,r t t T j0 1 2 3e   ( )
j

f t t T2 2j o j
2

# #= =r a- + -c m ,	 (15)

where .{ . , , . }0 05 0 0 05j !a -  As observed in (15), ( )r t2  has a 
constant IF law and the others have linearly increasing and 
decreasing IF laws. When analyzing the kth channel of ,( )teeg  
i.e., ,( )teegk  the frequency f0  is found as the frequency at which 
the time slice of ( )teegk  at /Tt 2=  attains its peak. Note that f0  
may be different for signals acquired from different channels as 

they may have different T-F signa-
tures. With this approach, f0  is 
found based on the fundamental 
component in .( )teegk  This is 
because the energy of the harmon-
ics in ( )teegk  is relatively small 
compared to that of the fundamen-
tal component [9]. 

Methodology
For each EEG segment ( )teegk  with TFD ,( , )t feegkt  three 
templates are formed using (15). The test statistic of the TFMF 
is based on the XWVD and is given by 

	 max ( , ) ( , ) .| |W t f t f t fd d( )

( )
,

k
r T

r reeg
j

k j jn t= ' 1## 	 (16)

As ( , )W t f,reegk j  is not necessarily real, its modulus is used. The test 
statistic is normalized to [0, 1], and compared with a threshold to 
find the binary decision value for the kth channel; if a seizure is 
detected in one of the channels, then ( )teeg  is labeled as a seizure. 

Performance Evaluation
Consider the same multichannel EEG database EEG-DB; the 
performance criterion for each T-F kernel is the area under the 
receiver operation characteristic graph (i.e., AUC). The AUCs for 
the spectogram (SPEC) (with Bartlet window length of 127 
samples) and MBD with ( ).0 01b =  are 0.94 and 0.95, respec-
tively. The t-domain matched filter has an AUC score of 0.87, 
indicating that TFMF-based detectors based on high-resolution 
TFDs offer high performance due to the T-F kernel dealing with 
the unknown parameters of the signals-to-detect. 

t-f-based features for classifying 
multicomponent nonstationary signals
Features using the information in the T-F domain can identify 
signals’ nonstationary characteristics (as in Figure 1) based either 
on signal characteristics such as IF or on image descriptors. 

t-f signal-related features
Signal-related features are directly related to signal parame-
ters. Consider an N-point signal, with discrete TFD [ , ]n kt  
represented by an N M#  matrix ,t  where M is the number of 
FFT points used in calculating ;[ , ]n kt  the following features 
can be defined: 

1)	The energy concentration measure shows how the signal 
energy is distributed over the T-F plane [24]. It is given by 

	 [ , ]F n k ·R
k

M

n

N
2
1

11

2

1 t=
==

e o// 	 (17)

2)	The T-F Renyi entropy is given by

	 / logF 1 1R2 a= - /[ , ] [ , ]n k n k ·knk
M

n
N

11 t t
==

` j// //

3)	T-F complexity measure uses both singular value decom-
position (SVD), and Shannon entropy and is based on the 
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singular values of the matrix ,t  i.e., ., , , ,S i N1 2i g=  It rep-
resents the magnitude and the number of the nonzero singular 
values of the TFD of nonstationary signals and is given by 

,S SF log i
N

R i i1 23 = - =
^ h/  where , , , ,S i N1 2i g=  are the 

normalized singular values of the matrix .t
4)	SVD-based features are also 
extracted from the singular val-
ues of the matrix .t  The maxi-
mum and variance of the 
singular values, denoted as FR4  
and FR5  respectively, can be cho-
sen as characteristic features of 
the singular values of .t  
5)	IF-based features are based on the statistics of the IF, such 
as its mean, i.e., ,FR6  its deviation, i.e., [ ]F f nmaxR i7 = -^ h

,[ ]f nmin i^ h  variance, skewness, and kurtosis. 
6)	Time-varying spectral flatness is an extension of the con-
cept of spectral flatness to nonstationary signals and can be 
defined as 

	 TVSF /M .[ , ] [ , ]n k n kk
M M

k
M

1
1

1

1

= t t
=

-
=

-

` j% /  

�For example, the mean and deviation of TVSF, i.e., FR8  and
,FR9  can be used as characteristic features. 

7)	The number of signal components is calculated as 
F 2R

F FR R
10 =

- reference2 2signal  [8].
Other signal related features include those presented in [11], 
and [25]–[27]. 

t-f image-related features
Image-related features are image descriptors extracted from 
T-F images, i.e., the TFDs considered as images. Such T-F 
image processing techniques detect regions from the TFD 
image where all important information, to be detected or iden-
tified, appear (e.g., IF and energy concentration pattern) and 
then extract the features which describe visually this informa-
tion. One such technique is watershed segmentation, which 
detects homogeneous regions in the T-F image and then com-
putes their statistical and geometrical features [8]. 

Morphometric features can be extracted from the moments 
of the binary segmented TFD image [ , ]n kseg( )t  with moment 
of order ( , )p q  for [ , ]n kseg( )t  expressed as mpq kn= //  

,[ , ]n k n kseg( )p qt  where ., , , ,p q 0 1 2 f=  Using ,mpq  we can 
define morphometric features such as area: ,F mI 001 =  compact-
ness: /PF FI I

2
2 1=  where ,( ) ( )P m m m m30 12

2
03 21

2= + ++  
coordinates of the centroid for the segmented region: FI3 =   

/m m10 00 and / ,m mFI 01 004=  rectangularity: ( )F m mI 20 02
2

5= - +  
,m4 11

2  and aspect ratio: F m mI 20 026 = -  [8]. 

Illustration on newborn seizure detection

Methodology
To evaluate the performance of a T-F feature, e.g., ,FR1  consider a 
segment of multichannel EEG signal ( )teeg  and a given T-F ker-
nel, with TFDs .[ , ], ..., [ , ]n k n keeg eegC1t t^ h  From each TFD we 

evaluate the feature using (17) and find ,, ...,F FF ( ) ( )
R R R

C1
1 1 1= ^ h  

where F( )
R
k

1  is the feature value extracted from the EEG signal 
recorded from the kth channel. Finally, the receiver operating 
characteristic (ROC) is found for | |FR1  and the resulting AUC, 
i.e., AUCFR1  is calculated. 

Performance 
evaluation
Using the database EEG-DB, the 
performance of T-F features is 
evaluated for each TFD by com-
puting the average AUCs for sig-
nal- and image-related features, 

i.e., /1 10AUC AUCiR F1
10

Ri=
=
/  and / .1 6AUC AUCiI F1

6
Ii=

=
/  

For SPEC with a Bartlet window of length 127 samples, MBD 
with ,.0 01b =  EMBD with .0 9a =  and .0 01b =  and WVD, 
AUCR  (respectively )AUCI  are 0.84 (0.70), 0.80 (0.59), 0.66 
(0.62), and 0.66 (0.57). For EMBD, the best performing signal- 
and image-related features are FR9  and ,FI4  respectively, with 
maximum 0.75 and 0.83 AUC scores. The results indicate that 
the T-F features extracted from high-resolution TFDs outper-
form those extracted from WVD. Also, for the problem of new-
born EEG seizure detection, comparing the AUC results of 
T-F-based features with those of the TFMFs, we observe that T-F 
features perform as good as TFMFs with much less computa-
tional load. 

Examples of t-f applications for automating 
medical abnormality diagnosis

t-f classification of ECG/HRV signals
Perinatal hypoxia is a condition resulting from the deficiency of 
oxygen supply to a tissue below physiological levels despite ade-
quate perfusion of the tissue by blood. It is a major cause of 
cerebral injury, accounting for a large amount of morbidity and 
mortality in newborns [13]. Early detection of hypoxia is of 
great clinical importance to reduce the risk of adverse outcomes 
following an injury and to help clinicians plan and conduct 
appropriate therapeutic strategies promptly to minimize brain 
injury. This can be done by automatic hypoxia detection method 
using T-F features extracted from HRV signals. 

Experiment and data recording
This study used 21 newborn piglets under hypoxic condition to 
simulate perinatal hypoxia in human babies because piglets have 
similar ontogenesis of nervous and cardiovascular systems to 
human babies [28]. Such an experiment with controlled hypoxia 
enables an accurate annotation of the data, a necessary require-
ment for evaluating the effectiveness of the analysis methods. Five 
minute epochs of electrocardiograms (ECGs) before and at the 
beginning of the hypoxic insult are converted to HRV signals [28]. 

t-f feature extraction
Figures 1(c) and 4(b) show that HRV signals can be modeled 
by three recognizable components. The HF component is 

Distinguishing between ictal 
and nonictal PLEDs is crucial to 

aid diagnosis and treatment 
decisions; this can be done by 

using IF measurements.
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related to respiration, LF com-
ponent is related to sympa-
thetic and vagal nervous 
regulation, and VLF compo-
nent is related to thermoregu-
l a t i o n  [ 1 2 ] ,  [ 1 3 ] .  T h e 
components are extracted 
from the MBD and EMBD of 
each HRV epoch using the CPL 
algorithm. Note that WVD is 
not used due to the presence of cross-terms in the WVD of 
HRV signals. For each component, the IF and the value of the 
TFD at its IF are found using: ( ( , ))max( ) t ff t arg

f
zi t= $ . and 

,( ) ( , ( ))p t t f ti z it=  respectively, where ( )p ti  provides an esti-
mate of the IA of the signal component [1, p. 442]. The mean 
and standard deviation of ( )f ti  and ( )p ti  for each signal com-
ponent are calculated, resulting in four T-F features per com-
ponent. Since the respiration rate remained constant, due to 
the subjects being ventilated during the experiment, the IF of 
the HF component was constant and thus its mean and stan-
dard deviation are not used. We therefore use ten T-F features 
for classifying the HRV signals. 

Performance evaluation
A support vector machine with Gaussian radial basis kernel [8] 
classifies the HRV signals of newborn piglets under hypoxic 
condition using the selected features. The total accuracy for 
classifiers based on SPEC (with Hanning window of 75 sam-
ples), MBD (with ),.0 03b =  and EMBD (with .0 6a =  and 

).0 02b =  are 91.2%, 94.9%, and 91.3%, respectively. These 
high AUC scores indicate that IF- and IA-based features 
extracted from high-resolution TFDs of HRV signals can be 
used for automatic detection of perinatal hypoxia. 

t-f approach as a diagnosis aid for brain  
injury in adult EEG
PLEDs are EEG waveforms associated with brain injury. For 
some patients, PLEDs are associated with ictal activity (sei-
zures). Distinguishing between ictal and nonictal PLEDs is 
crucial to aid diagnosis and treatment decisions [29]; this 
can be done by using IF measurements. For PLED signals, 
the CPL algorithm shows low IF estimation accuracy, proba-
bly due to relatively large levels of background activity 
within the PLED signals. A three-step T-F approach 
enhances this IF estimation [29] using 1) a simple spike-
enhancement method with a nonlinear energy operator, 2) 
following transformation to the T-F domain, a homomor-
phic filter described below removes the spectral modulation 
in the T-F domain [29], and then 3) using a CPL algorithm 
estimated tracks, a rule-based method selects two tracks 
with no time overlap and combines them to form one IF. 
The rule-based method assesses energy, time-duration, and 
mean frequencies of the IF to ensure that the estimated IF 
is the actual IF of the PLEDs and not some other EEG back-
ground activity. 

The homomorphic filter works as 
follows: first, transform the high-
resolution separable-kernel TFD 

( , )t ft  to a time-lag domain, 
{log ( )} .t, f( , )R t F 1

t tx = "x
-  Then, 

apply a high-pass filter ( )l x  in the 
time-lag domain ( , )R t x  to remove 
the spectral modulation, and then 
invert back to the T-F domain: 

.{R( , ) ( )}t l( , ) expt f F f x xt = "xr " ,  
Figure 2 shows an example where the enhanced TFD ( , )t ftr  
provides a more accurate estimate of the IF for the PLED sig-
nal. The separable-kernel for ( , )t ft  has a Hamming window 
for lag function ( )g2 x  and a Hanning window for Doppler 
function ( )G1 o  [1, p. 128]. This kernel produces a smooth TFD 
with few ripples around zero, which is important as the method 
assumes the TFD is nonnegative [29]. 

The method was tested with EEG data containing PLEDs 
marked by two expert clinical neurophysiologists. Using  
33 PLED epochs taken from eight patients, a time-varying 
period sequence was constructed and then inverted to repre-
sent the true IF of the PLEDs. The IF estimation method was 
tested against this true IF and showed a lower mean-squared 
error for 79% of epochs compared to the mean-squared error 
for the IF estimation using only the CPL algorithm. On a data-
base of 13 patients with PLEDs symptoms, two statistical fea-
tures of the IFs (kurtosis and skewness) showed a statistical 
significant difference between the ictal and nonictal PLED 
groups ) ..p 0 005( 1  In addition, evaluating the synchrony of 
PLEDs across EEG channels, by assessing the similarity of IF 
in each channel, also showed a statistical difference 
( ) ..p 0 051  Neither IF mean nor median showed a difference 
between the two groups, thus emphasizing the need for a T-F 
analysis approach based on high-resolution TFDs that yield 
accurate IF estimates. 

t-f enhancement of pathological  
oesophageal speech signals
Oesophageal speech is an abnormal mode of speaking used by 
people without a larynx. They speak by expelling air from the 
stomach through the oesophagus into the vocal tract. The air 
vibrates the upper segment of the oesophagus, thus mimicking 
the normal periodic opening and closing of the glottal fold. 
Such speech sounds rough, harsh, often with low pitch and 
volume. Speech enhancement can improve its quality and 
intelligibility and thus help improve quality of life for oesopha-
geal speakers. Such speech is more nonstationary than normal 
laryngeal speech: it is noisier and the fundamental frequency 
varies significantly more than with laryngeal speech [30]. 
Existing methods to enhance oesophageal speech assume that 
the signal is short-time stationary, and split the signal into a 
source signal (a model of the glottal signal) and a filter compo-
nent (a model of the vocal tract) [30]. An improvement is 
obtained by using quadratic TFDs to transform speech signal 

( )s t  to the T-F domain ;( , )t fst  and then proceed as follows: 

The rule-based method  
assesses energy, time-duration, 

and mean frequencies of  
the IF to ensure that the  

estimated IF is the actual IF of  
the PLEDs and not some other  

EEG background activity.
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1)	divide this TFD into a 
source component (approxi-
mating the glottal source) and 
a filter component (approxi-
mating the vocal tract), using 
homomorphic filtering in the 
T-F domain, as in the previous 
example of PLEDs; note that 

( , ) ( , ) ( , )t f t f t fs source filtert t t=

2)	estimate IF ,( )f tk  IA ( )a tk  and phase difference ( )tk{  
from the source TFD; a CPL algorithm estimates the IF and 
amplitude; then estimate the phase as follows: 

•	 using the IF and amplitude parameters, construct sig-
nal ( )x t  using the real part of the sinusoidal model from 
(5), where ( ) ( )t f2 dk k

t

0
z r x x= #  

•	 to estimate the phase difference ( )t{  between ( )s t  and 
,( )x t  form a cross TFD of speech signal ( )s t  and signal 

estimate ( )x t  and use the same locations of the IF com-
ponents ( )f tk  to estimate the phase difference

3)  smooth all instantaneous parameter ,( )f tk  ,( )a tk  and phase 
( )tk{  using a low-pass filter and form another signal ( )y t  

using the same model again in (5) with these filtered instanta-
neous parameters; here ( ) ( )t tk kz {= +  ( )f d2 k

t

0
r x x#

4)	transform ( )y t  to the T-F domain  ;( , )t fyt  and modu-
late the TFD of ( )y t  with ( , )t ffiltert  to form a final TFD 

( , ) ( , ) ( , )t f t f t fyenhanced filtert t t=  (see enhanced TFD in 
Figure 3) 
5)	finally, estimate the t-domain signal from ( , )t fenhancedt  
using the above procedure.

Estimating the phase difference is important for reconstructing 
speech signals to avoid unnatural sounding phase distortion. 
The method is tested with 23 recordings of the word “mama” 
by six Spanish oesophageal speakers. For each word sample, its 
voiced segment was manually identified and a harmonic-to-
noise ratio (HNR) was computed. The original word is com-
pared with the enhanced version, using the above method.  
For all 23 samples, there is an improvement in HNR, with a 
significant average improvement of . dB ( ) ..p2 81 1 4 10 5#= -  

T-F measurement of asynchrony  
in multichannel newborn EEG
The quantification of global phase synchronization within 
multivariate nonstationary signals has an important applica-
tion for assessing interactions and connectivity between differ-
ent parts of the human brain using multichannel EEGs (see 
[14]–[16] and references therein); T-F-based approaches can 
be used for studying such functional connectivity using EEG 
and fMRI [3]. 

Existing methods based on the IP of signals use the unwrap-
ping method to deal with the problem of unpredicted 2! r  jumps 
between consecutive phase values. To overcome this, an IF-based 
generalized phase synchrony measure is defined using the concept 
of cointegration with the linear relationship between the channels 
IF laws [16]. Consider a multivariate signal of C channels and 
assume that each channel has Q IF laws estimated from a 

high-resolution TFD. For the 
th; , , ...,q q Q1 2 =  IF law of the 

signal components, the maximum 
eigenvalues test can estimate the 
number of cointegrating relation-
ships within the IF laws; 

.;r r C0 ( ) ( )q q# #  The phase syn-
chrony measure is then defined as 

the normalized number of the cointegrating relationships r( )q  
given by / . ;Q C r1 ( )q

q
Q

1h =
=

/  0h =  means no cointegrating 
relationship within IF laws, and 1h =  means complete phase 
cointegration within the multivariate signal. Experimental results 
using a multichannel newborn EEG show a significant increment 
of the synchrony measure during the seizure periods, meaning 
that EEG channels are more synchronized within the seizure peri-
ods than the nonseizure intervals; thus providing a useful and 
simple T-F assessment tool. 

Conclusions and perspectives
This article describes selected medical applications that illus-
trate great potential in further extending the use of QTFDs as 
an aid to diagnosis. This requires that new specific research 
directions be pursued, by defining data-dependent T-F meth-
ods, optimizing the parameters of TFD kernels, and modeling 
signals in the T-F domain. Current studies aim to translate 
these methods to a clinical setting. 
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